We prove that if X is a strongly zero-dimensional space, then for every locally compact second-countable space M, C p(X, M) is a continuous image of a closed subspace of C p(X). It follows in particular, that for strongly zero-dimensional spaces X, the Lindelöf number of C p(X)×C p(X) coincides with the Lindelöf number of C p(X). We also prove that l(C p(X n)κ) ≤ l(C p(X)κ) whenever κ is an infinite cardinal and X is a strongly zero-dimensional union of at most κcompact subspaces.
@article{bwmeta1.element.doi-10_2478_s11533-011-0050-y, author = {Oleg Okunev}, title = {The Lindel\"of number of C p(X)$\times$C p(X) for strongly zero-dimensional X}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {978-983}, zbl = {1245.54018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0050-y} }
Oleg Okunev. The Lindelöf number of C p(X)×C p(X) for strongly zero-dimensional X. Open Mathematics, Tome 9 (2011) pp. 978-983. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0050-y/
[1] Arhangel’skiĭ A.V., Problems in C p-theory, In: Open Problems in Topology, North-Holland, Amsterdam, 1990, 601–615
[2] Arhangel’skiĭ A.V., Topological Function Spaces, Math. Appl. (Soviet Ser.), 78, Kluwer, Dordrecht, 1992
[3] Engelking R., General Topology, Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989
[4] Mardešić S., On covering dimension and inverse limits of compact spaces, Illinois J. Math, 1960, 4(2), 278–291 | Zbl 0094.16902
[5] Okunev O., On Lindelöf Σ-spaces of continuous functions in the pointwise topology, Topology Appl., 1993, 49(2), 149–166 http://dx.doi.org/10.1016/0166-8641(93)90041-B
[6] Okunev O., Tamano K., Lindelöf powers and products of function spaces, Proc. Amer. Math. Soc., 1996, 124(9), 2905–2916 http://dx.doi.org/10.1090/S0002-9939-96-03629-5 | Zbl 0858.54013
[7] Tkachuk V.V., Some criteria for C p(X) to be an LΣ(≤ ω)-space (in preparation)