On a generalized Stokes problem
Václav Mácha
Open Mathematics, Tome 9 (2011), p. 874-887 / Harvested from The Polish Digital Mathematics Library

We deal with a generalization of the Stokes system. Instead of the Laplace operator, we consider a general elliptic operator and a pressure gradient with small perturbations. We investigate the existence and uniqueness of a solution as well its regularity properties. Two types of regularity are provided. Aside from the classical Hilbert regularity, we also prove the Hölder regularity for coefficients in VMO space.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269128
@article{bwmeta1.element.doi-10_2478_s11533-011-0047-6,
     author = {V\'aclav M\'acha},
     title = {On a generalized Stokes problem},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {874-887},
     zbl = {1233.35060},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0047-6}
}
Václav Mácha. On a generalized Stokes problem. Open Mathematics, Tome 9 (2011) pp. 874-887. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0047-6/

[1] Adams R.A., Fournier J.J.F., Sobolev Spaces, 2nd ed., Pure Appl. Math. (Amst.), 140, Elsevier/Academic Press, Amsterdam, 2003

[2] Bulíček M., Málek J., Rajagopal K.R., Navier’s slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity, Indiana Univ. Math. J., 2007, 56(1), 51–85 http://dx.doi.org/10.1512/iumj.2007.56.2997 | Zbl 1129.35055

[3] Chiarenza F., L p regularity for systems of PDEs, with coeficients in VMO, In: Nonlinear Analysis, Function Spaces and Applications, 5, Proceedings of the 5th Spring School, Prague, May 23–28, 1994, Prometheus, Prague, 1994, 1–32

[4] Daněček J., John O., Stará J., Morrey space regularity for weak solutions of Stokes systems with VMO coefficients, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-010-0169-7 | Zbl 1238.35096

[5] Franta M., Málek J., Rajagopal K.R., On steady flows of fluids with pressure- and shear-dependent viscosities, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2005, 461(2055), 651–670 http://dx.doi.org/10.1098/rspa.2004.1360 | Zbl 1145.76311

[6] Friedman A., Partial Differential Equations, Holt, Rinehart and Winston, New York-Montreal-London, 1969 | Zbl 0224.35002

[7] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud., 105, Princeton University Press, Princeton, 1983

[8] Giaquinta M., Modica G., Non linear systems of the type of the stationary Navier-Stokes system, J. Reine Angew. Math., 1982, 330, 173–214 | Zbl 0492.35018

[9] Huy N.D., On Existence and Regularity of Solutions to Perturbed Systems of Stokes Type, Ph.D. thesis, Charles University, Prague, 2006

[10] Huy N.D., Stará J., On existence and regularity of solutions to a class of generalized stationary Stokes problem, Comment. Math. Univ. Carolin., 2006, 47(2), 241–264 | Zbl 1150.76010

[11] Kufner A., John O., Fučík S., Function Spaces, Monographs Textbooks Mech. Solids Fluids: Mech. Anal., Noordhoff, Leyden, 1977

[12] Lax P.D., Functional Analysis, Pure Appl. Math. (N. Y.), John Wiley & Sons, New York, 2002 | Zbl 1009.47001

[13] Málek J., Mingione G., Stará J., Fluids with pressure dependent viscosity: partial regularity of steady flows, In: EQUADIFF 2003, Proceedings of the International Conference of Differential Equations, Hasselt/Diepenbeek, July 22–26, 2003, World Scientific, Hackensack, 2005, 380–385 http://dx.doi.org/10.1142/9789812702067_0059 | Zbl 1101.76021

[14] Nečas J., Hlaváček I., Mathematical Theory of Elastic and Elasto-Plastic Bodies: an Introduction, Stud. Appl. Mech., 3, Elsevier, Amsterdam-New York, 1980 | Zbl 0448.73009

[15] Renardy M., Some remarks on the Navier-Stokes equations with a pressure-dependent viscosity, Comm. Partial Differential Equations, 1986, 11(7), 779–793 http://dx.doi.org/10.1080/03605308608820445 | Zbl 0597.35097

[16] Rudin W., Functional Analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill, New York-Düsseldorf-Johannesburg, 1973

[17] Schechter M., Principles of Functional Analysis, Academic Press, New York-London, 1971 | Zbl 0211.14501

[18] Sohr H., The Navier-Stokes Equations, Birkhäuser Adv. Texts Basler Lehrbucher, Birkhäuser, Basel, 2001

[19] Troianiello G.M., Elliptic Differential Equations and Obstacle Problems, Univ. Ser. Math., Plenum Press, New York, 1987 | Zbl 0655.35002