Moment-angle complexes from simplicial posets
Zhi Lü ; Taras Panov
Open Mathematics, Tome 9 (2011), p. 715-730 / Harvested from The Polish Digital Mathematics Library

We extend the construction of moment-angle complexes to simplicial posets by associating a certain T m-space Z S to an arbitrary simplicial poset S on m vertices. Face rings ℤ[S] of simplicial posets generalise those of simplicial complexes, and give rise to new classes of Gorenstein and Cohen-Macaulay rings. Our primary motivation is to study the face rings ℤ[S] by topological methods. The space Z S has many important topological properties of the original moment-angle complex Z K associated to a simplicial complex K. In particular, we prove that the integral cohomology algebra of Z S is isomorphic to the Tor-algebra of the face ring ℤ[S]. This leads directly to a generalisation of Hochster’s theorem, expressing the algebraic Betti numbers of the ring ℤ[S] in terms of the homology of full subposets in S. Finally, we estimate the total amount of homology of Z S from below by proving the toral rank conjecture for the moment-angle complexes Z S.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269523
@article{bwmeta1.element.doi-10_2478_s11533-011-0041-z,
     author = {Zhi L\"u and Taras Panov},
     title = {Moment-angle complexes from simplicial posets},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {715-730},
     zbl = {1236.57045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0041-z}
}
Zhi Lü; Taras Panov. Moment-angle complexes from simplicial posets. Open Mathematics, Tome 9 (2011) pp. 715-730. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0041-z/

[1] Bahri A., Bendersky M., Cohen F.R., Gitler S, The polyhedral product functor: a method of decomposition for moment-angle complexes, arrangements and related spaces, Adv. Math., 2010, 225(3), 1634–1668 http://dx.doi.org/10.1016/j.aim.2010.03.026 | Zbl 1197.13021

[2] Buchstaber V.M., Panov T.E., Torus Actions and their Applications in Topology and Combinatorics, Univ. Lecture Ser., 24, American Mathematical Society, Providence, 2002 | Zbl 1012.52021

[3] Bukhshtaber V.M., Panov T.E., Torus actions and the combinatorics of polytopes, Proc. Steklov Inst. Math., 1999, 2(225), 87–120 | Zbl 0996.52012

[4] Bukhstaber V.M., Panov T.E., Combinatorics of simplicial cell complexes and torus actions, Proc. Steklov Inst. Math., 2004, 4(247), 33–49 | Zbl 1098.52003

[5] Cao X., Lü Z., Möbius transform, moment-angle complexes and Halperin-Carlsson conjecture, preprint available at http://arxiv.org/abs/0908.3174 | Zbl 1235.05163

[6] Davis M.W., Januszkiewicz T., Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J., 1991, 62(2), 417–451 http://dx.doi.org/10.1215/S0012-7094-91-06217-4 | Zbl 0733.52006

[7] Duval A.M., Free resolutions of simplicial posets, J. Algebra, 1997, 188(1), 363–399 http://dx.doi.org/10.1006/jabr.1996.6855

[8] Erokhovets N., Buchstaber invariant of simple polytopes, preprint available at http://arxiv.org/abs/0908.3407 | Zbl 1184.52013

[9] Fukukawa Y, Masuda M., Buchstaber invariants of skeleta of a simplex, preprint available at http://arxiv.org/abs/0908.3448 | Zbl 1238.57031

[10] Gitler S., Lopez de Medrano S., Intersections of quadrics, moment-angle manifolds and connected sums, preprint available at http://arxiv.org/abs/0901.2580 | Zbl 1276.14087

[11] Grbić J., Theriault S., The homotopy type of the complement of a coordinate subspace arrangement, Topology, 2007, 46(4), 357–396 http://dx.doi.org/10.1016/j.top.2007.02.006 | Zbl 1118.55006

[12] Maeda H., Masuda M., Panov T, Torus graphs and simplicial posets, Adv. Math., 2007, 212(2), 458–483 http://dx.doi.org/10.1016/j.aim.2006.10.011 | Zbl 1119.55004

[13] Masuda M., Panov T, On the cohomology of torus manifolds, Osaka J. Math., 2006, 43(3), 711–746 | Zbl 1111.57019

[14] Panov T.E., Cohomology of face rings, and torus actions, In: Surveys in Contemporary Mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge University Press, Cambridge, 2008, 165–201 | Zbl 1140.13018

[15] Panov T.E., Ray N., Categorical aspects of toric topology, In: Toric Topology, Contemp. Math., 460, American Mathematical Society, Providence, 2008, 293–322 | Zbl 1149.55014

[16] Panov T, Ray N., Vogt R., Colimits, Stanley-Reisner algebras, and loop spaces, Categorical Decomposition Techniques in Algebraic Topology, Isle of Skye, 2001, Progr. Math., 215, Birkhäuser, Basel, 2004, 261–291

[17] Stanley R.P, f-vectors and h-vectors of simplicial posets, J. Pure Appl. Algebra, 1991, 71(2–3), 319–331 http://dx.doi.org/10.1016/0022-4049(91)90155-U

[18] Ustinovsky Yu., Toral rank conjecture for moment-angle complexes, preprint available at http://arxiv.org/abs/0909.1053