A Banach space X is said to be an extremely non-complex space if the norm equality ∥Id +T 2∥ = 1+∥T 2∥ holds for every bounded linear operator T on X. We show that every extremely non-complex Banach space has positive numerical index, it does not have an unconditional basis and that the infimum of diameters of the slices of its unit ball is positive.
@article{bwmeta1.element.doi-10_2478_s11533-011-0040-0, author = {Miguel Mart\'\i n and Javier Mer\'\i }, title = {Extremely non-complex Banach spaces}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {797-802}, zbl = {1242.46015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0040-0} }
Miguel Martín; Javier Merí. Extremely non-complex Banach spaces. Open Mathematics, Tome 9 (2011) pp. 797-802. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0040-0/
[1] Duncan J., McGregor C.M., Pryce J.D., White A.J., The numerical index of a normed space, J. Lond. Math. Soc., 1970, 2, 481–488 | Zbl 0197.10402
[2] Kadets V.M., Some remarks concerning the Daugavet equation, Quaest. Math., 1996, 19(1–2), 225–235 http://dx.doi.org/10.1080/16073606.1996.9631836
[3] Kadets V., Katkova O., Martín M., Vishnyakova A., Convexity around the unit of a Banach algebra, Serdica Math. J., 2008, 34(3), 619–628 | Zbl 1224.46025
[4] Kadets V., Martín M., Merí J., Norm equalities for operators, Indiana Univ. Math. J., 2007, 56(5), 2385–2411 http://dx.doi.org/10.1512/iumj.2007.56.3046 | Zbl 1132.46006
[5] Kadets V.M., Shvidkoy R.V., Sirotkin G.G., Werner D., Banach spaces with the Daugavet property, Trans. Amer. Math. Soc., 2000, 352(2), 855–873 http://dx.doi.org/10.1090/S0002-9947-99-02377-6 | Zbl 0938.46016
[6] Koszmider P., Banach spaces of continuous functions with few operators, Math. Ann., 2004, 330(1), 151–183 http://dx.doi.org/10.1007/s00208-004-0544-z | Zbl 1064.46009
[7] Koszmider P., Martín M., Merí J., Extremely non-complex C(K) spaces, J. Math. Anal. Appl., 2009, 350(2), 601–615 http://dx.doi.org/10.1016/j.jmaa.2008.04.021 | Zbl 1162.46016
[8] Koszmider P., Martín M., Merí J., Isometries on extremely non-complex C(K) spaces, J. Inst. Math. Jussieu, 2011, 10(2), 325–348 http://dx.doi.org/10.1017/S1474748010000204 | Zbl 1221.46012
[9] Martín M., Oikhberg T., An alternative Daugavet property, J. Math. Anal. Appl., 2004, 294(1), 158–180 http://dx.doi.org/10.1016/j.jmaa.2004.02.006 | Zbl 1054.46010
[10] Megginson R.E., An Introduction to Banach Space Theory, Grad. Texts in Math., 183, Springer, New York, 1998 | Zbl 0910.46008
[11] Oikhberg T., Some properties related to the Daugavet property, In: Banach Spaces and their Applications in Analysis, Walter de Gruyter, Berlin, 2007, 399–401 | Zbl 1140.46305