Extremely non-complex Banach spaces
Miguel Martín ; Javier Merí
Open Mathematics, Tome 9 (2011), p. 797-802 / Harvested from The Polish Digital Mathematics Library

A Banach space X is said to be an extremely non-complex space if the norm equality ∥Id +T 2∥ = 1+∥T 2∥ holds for every bounded linear operator T on X. We show that every extremely non-complex Banach space has positive numerical index, it does not have an unconditional basis and that the infimum of diameters of the slices of its unit ball is positive.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269605
@article{bwmeta1.element.doi-10_2478_s11533-011-0040-0,
     author = {Miguel Mart\'\i n and Javier Mer\'\i },
     title = {Extremely non-complex Banach spaces},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {797-802},
     zbl = {1242.46015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0040-0}
}
Miguel Martín; Javier Merí. Extremely non-complex Banach spaces. Open Mathematics, Tome 9 (2011) pp. 797-802. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0040-0/

[1] Duncan J., McGregor C.M., Pryce J.D., White A.J., The numerical index of a normed space, J. Lond. Math. Soc., 1970, 2, 481–488 | Zbl 0197.10402

[2] Kadets V.M., Some remarks concerning the Daugavet equation, Quaest. Math., 1996, 19(1–2), 225–235 http://dx.doi.org/10.1080/16073606.1996.9631836

[3] Kadets V., Katkova O., Martín M., Vishnyakova A., Convexity around the unit of a Banach algebra, Serdica Math. J., 2008, 34(3), 619–628 | Zbl 1224.46025

[4] Kadets V., Martín M., Merí J., Norm equalities for operators, Indiana Univ. Math. J., 2007, 56(5), 2385–2411 http://dx.doi.org/10.1512/iumj.2007.56.3046 | Zbl 1132.46006

[5] Kadets V.M., Shvidkoy R.V., Sirotkin G.G., Werner D., Banach spaces with the Daugavet property, Trans. Amer. Math. Soc., 2000, 352(2), 855–873 http://dx.doi.org/10.1090/S0002-9947-99-02377-6 | Zbl 0938.46016

[6] Koszmider P., Banach spaces of continuous functions with few operators, Math. Ann., 2004, 330(1), 151–183 http://dx.doi.org/10.1007/s00208-004-0544-z | Zbl 1064.46009

[7] Koszmider P., Martín M., Merí J., Extremely non-complex C(K) spaces, J. Math. Anal. Appl., 2009, 350(2), 601–615 http://dx.doi.org/10.1016/j.jmaa.2008.04.021 | Zbl 1162.46016

[8] Koszmider P., Martín M., Merí J., Isometries on extremely non-complex C(K) spaces, J. Inst. Math. Jussieu, 2011, 10(2), 325–348 http://dx.doi.org/10.1017/S1474748010000204 | Zbl 1221.46012

[9] Martín M., Oikhberg T., An alternative Daugavet property, J. Math. Anal. Appl., 2004, 294(1), 158–180 http://dx.doi.org/10.1016/j.jmaa.2004.02.006 | Zbl 1054.46010

[10] Megginson R.E., An Introduction to Banach Space Theory, Grad. Texts in Math., 183, Springer, New York, 1998 | Zbl 0910.46008

[11] Oikhberg T., Some properties related to the Daugavet property, In: Banach Spaces and their Applications in Analysis, Walter de Gruyter, Berlin, 2007, 399–401 | Zbl 1140.46305