We present an algorithm to compute a primary decomposition of an ideal in a polynomial ring over the integers. For this purpose we use algorithms for primary decomposition in polynomial rings over the rationals, resp. over finite fields, and the idea of Shimoyama-Yokoyama, resp. Eisenbud-Hunecke-Vasconcelos, to extract primary ideals from pseudo-primary ideals. A parallelized version of the algorithm is implemented in Singular. Examples and timings are given at the end of the article.
@article{bwmeta1.element.doi-10_2478_s11533-011-0037-8, author = {Gerhard Pfister and Afshan Sadiq and Stefan Steidel}, title = {An algorithm for primary decomposition in polynomial rings over the integers}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {897-904}, zbl = {1246.13028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0037-8} }
Gerhard Pfister; Afshan Sadiq; Stefan Steidel. An algorithm for primary decomposition in polynomial rings over the integers. Open Mathematics, Tome 9 (2011) pp. 897-904. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0037-8/
[1] Adams W.W., Loustaunau P., An Introduction to Gröbner Bases, Grad. Stud. Math., 3, American Mathematical Society, Providence, 1994 | Zbl 0803.13015
[2] Ayoub C.W., The decomposition theorem for ideals in polynomial rings over a domain, J. Algebra, 1982, 76(1), 99–110 http://dx.doi.org/10.1016/0021-8693(82)90239-3
[3] Boege W., Gebauer R., Kredel H., Some examples for solving systems of algebraic equations by calculating Groebner bases, J. Symbolic Comput, 1986, 2(1), 83–98 http://dx.doi.org/10.1016/S0747-7171(86)80014-1 | Zbl 0602.65032
[4] Decker W., Greuel G.-M., Pfister G., Primary decomposition: algorithms and comparisons, In: Algorithmic Algebra and Number Theory, Heidelberg, 1997, Springer, Berlin, 1999, 187–220 | Zbl 0932.13019
[5] Decker W., Greuel G.-M., Pfister G., Schönemann H., Sincular3-1-1 - A computer algebra system for polynomial computations, 2010, http://www.singular.uni-kl.de
[6] Eisenbud D., Huneke C., Vasconcelos W., Direct methods for primary decomposition, Invent. Math., 1992, 110(2), 207–235 http://dx.doi.org/10.1007/BF01231331 | Zbl 0770.13018
[7] Eisenbud D., Sturmfels B., Binomial ideals, Duke Math. J., 1996, 84(1), 1–45 http://dx.doi.org/10.1215/S0012-7094-96-08401-X
[8] Gianni P., Trager B., Zacharias G., Gröbner bases and primary decomposition of polynomial ideals, J. Symbolic Comput, 1988, 6(2–3), 149–167 http://dx.doi.org/10.1016/S0747-7171(88)80040-3 | Zbl 0667.13008
[9] Gräbe H.-G., The SymbolicData Project - Tools and Data for Testing Computer Algebra Software, 2010, http://www.symbolicdata.org
[10] Greuel G.-M., Pfister G., A Singular Introduction to Commutative Algebra, 2nd ed., Springer, Berlin, 2008
[11] Greuel C.-M., Seelisch F., Wienand O., The Gröbner basis of the ideal of vanishing polynomials, J. Symbolic Comput., 2011, 46(5), 561–570 http://dx.doi.org/10.1016/j.jsc.2010.10.006 | Zbl 1210.13028
[12] Seidenberg A., Constructions in a polynomial ring over the ring of integers, Amer. J. Math., 1978, 100(4), 685–703 http://dx.doi.org/10.2307/2373905 | Zbl 0416.13013
[13] Shimoyama T, Yokoyama K., Localization and primary decomposition of polynomial ideals, J. Symbolic Comput., 1996, 22(3), 247–277 http://dx.doi.org/10.1006/jsco.1996.0052 | Zbl 0874.13022
[14] Wienand O., Algorithms for Symbolic Computation and their Applications, Ph.D. thesis, Kaiserslautern, 2011