Loading [MathJax]/extensions/MathZoom.js
Covariant version of the Stinespring type theorem for Hilbert C*-modules
Maria Joiţa
Open Mathematics, Tome 9 (2011), p. 803-813 / Harvested from The Polish Digital Mathematics Library

In this paper, we prove a covariant version of the Stinespring theorem for Hilbert C*-modules. Also, we show that there is a bijective correspondence between operator valued completely positive maps, (u′, u)-covariant with respect to the dynamical system (G, η, X) on Hilbert C*-modules and (u′, u)-covariant operator valued completely positive maps on the crossed product G ×η X of X by η.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269066
@article{bwmeta1.element.doi-10_2478_s11533-011-0035-x,
     author = {Maria Joi\c ta},
     title = {Covariant version of the Stinespring type theorem for Hilbert C*-modules},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {803-813},
     zbl = {1243.46049},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0035-x}
}
Maria Joiţa. Covariant version of the Stinespring type theorem for Hilbert C*-modules. Open Mathematics, Tome 9 (2011) pp. 803-813. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0035-x/

[1] Arambašić L., Irreducible representations of Hilbert C*-modules, Math. Proc. R. Ir. Acad., 2005, 105A(2), 11–24 | Zbl 1098.46045

[2] Asadi M.B., Stinespring’s theorem for Hilbert C*-modules, J. Operator Theory, 2008, 62(2), 235–238 | Zbl 1199.46128

[3] Bakić D., Guljaš B., On a class of module maps of Hilbert C*-modules, Math. Commun., 2002, 7(2), 177–192 | Zbl 1031.46066

[4] Bhat B.V.R., Ramesh G., Sumesh K., Stinespring’s theorem for maps on Hilbert C*-modules, J. Operator Theory, preprint available at http://arxiv.org/abs/1001.3743 | Zbl 1265.46091

[5] Joiţa M., Crossed products of pro-C*-algebras and Morita equivalence, Mediterr. J. Math., 2008, 5(4), 467–492 http://dx.doi.org/10.1007/s00009-008-0162-1 | Zbl 1182.46044

[6] Joiţa M., Covariant representations for Hilbert C*-modules (in preparation)

[7] Kusuda M., Duality for crossed products of Hilbert C*-modules, J. Operator Theory, 2008, 60(1), 85–112 | Zbl 1164.46032

[8] Lance E.C., Hilbert C*-modules, London Math. Soc. Lecture Note Ser., 210, Cambridge University Press, Cambridge, 1995

[9] Paulsen V., A covariant version of Ext, Michigan Math. J., 1982, 29(2), 131–142 http://dx.doi.org/10.1307/mmj/1029002666 | Zbl 0507.46060

[10] Scutaru H., Some remarks on covariant completely positive linear maps on C*-algebras, Rep. Math. Phys., 1979, 16(1), 79–87 http://dx.doi.org/10.1016/0034-4877(79)90040-5 | Zbl 0437.46051

[11] Stinespring W.F., Positive functions on C*-algebras, Proc. Amer. Math. Soc., 1955, 6(2), 211–216 | Zbl 0064.36703

[12] Tabadkan G.A., Skeide M., Generators of dynamical systems on Hilbert modules, Commun. Stoch. Anal., 2007, 1(2), 193–207 | Zbl 1328.46061