In this paper we describe the structure of surjective isometries of the spaces of all absolutely continuous, singular, or discrete probability distribution functions on R equipped with the Kolmogorov-Smirnov metric. We also study the structure of affine automorphisms of the space of all distribution functions.
@article{bwmeta1.element.doi-10_2478_s11533-011-0034-y, author = {Lajos Moln\'ar}, title = {Kolmogorov-Smirnov isometries and affine automorphisms of spaces of distribution functions}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {789-796}, zbl = {1239.46022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0034-y} }
Lajos Molnár. Kolmogorov-Smirnov isometries and affine automorphisms of spaces of distribution functions. Open Mathematics, Tome 9 (2011) pp. 789-796. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0034-y/
[1] Dolinar G., Molnár L., Isometries of the space of distribution functions with respect to the Kolmogorov-Smirnovmetric, J. Math. Anal. Appl.,2008, 348(1), 494–498 http://dx.doi.org/10.1016/j.jmaa.2008.07.054 | Zbl 1162.46305
[2] Yeh J., Real Analysis: Theory of Measure and Integration, 2nd ed., World Scientific, Hackensack, 2006 | Zbl 1098.28002