Let A be an R G-module, where R is an integral domain and G is a soluble group. Suppose that C G(A) = 1 and A/C A(G) is not a noetherian R-module. Let L nnd(G) be the family of all subgroups H of G such that A/C A(H) is not a noetherian R-module. In this paper we study the structure of those G for which L nnd(G) satisfies the maximal condition.
@article{bwmeta1.element.doi-10_2478_s11533-011-0033-z, author = {Olga Dashkova}, title = {Modules over group rings of soluble groups with a certain condition of maximality}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {922-928}, zbl = {1245.20003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0033-z} }
Olga Dashkova. Modules over group rings of soluble groups with a certain condition of maximality. Open Mathematics, Tome 9 (2011) pp. 922-928. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0033-z/
[1] Dashkova O.Yu., On a class of modules over group rings of solvable groups with restrictions on some systems of subgroups, Fundam. Prikl. Mat., 2008, 14(7), 111–119 (in Russian)
[2] Dashkova O.Yu., Modules over integer group rings of locally soluble groups with restrictions on some systems of subgroups, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 2009, 2, 14–19 (in Russian) | Zbl 1170.20301
[3] Dashkova O.Yu., On a class of modules over group rings of locally soluble groups, Trudy Inst. Mat. i Mekh. Ural. Otd. Ros. Akad. Nauk, 2009, 15(2), 94–98 (in Russian)
[4] Dixon M.R., Evans M.J., Kurdachenko L.A., Linear groups with the minimal condition on subgroups of infinite central dimension, J. Algebra, 2004, 277(1), 172–186 http://dx.doi.org/10.1016/j.jalgebra.2004.02.029 | Zbl 1055.20042
[5] Dixon M.R., Kurdachenko L.A., Linear groups with infinite central dimension, In: Groups, St. Andrews, 2005, 1, London Math. Soc. Lecture Note Ser., 399, Cambridge University Press, Cambridge, 2007, 306–312 | Zbl 1125.20040
[6] Fuchs L., Infinite Abelian Groups, Vol. 1, Mir, Moscow, 1974 (in Russian) | Zbl 0274.20067
[7] Kurdachenko L.A., Groups with minimax classes of conjugate elements, In: Infinite Groups and Related Algebraic Structures, Akad. Nauk Ukrainy, Inst. Mat., Kiev, 1993, 160–177 (in Russian) | Zbl 0900.20062
[8] Kurdachenko L.A., Subbotin I.Ya., Linear groups with the maximal condition on subgroups of infinite central dimension, Publ. Mat., 2006, 50(1), 103–131 | Zbl 1132.20029
[9] Muñoz-Escolano J.M., Otal J., Semko N.N., The structure of infinite dimensional linear groups satisfying certain finiteness conditions, Algebra Discrete Math., 2009, 8(4), 120–134 | Zbl 1199.20082
[10] Wehrfritz B.A.F., Infinite Linear Groups, Ergeb. Math. Grenzgeb., 76, Springer, New York-Heidelberg, 1973