The five-variable Volterra system
Janusz Zieliński
Open Mathematics, Tome 9 (2011), p. 888-896 / Harvested from The Polish Digital Mathematics Library

We give a description of all polynomial constants of the five-variable Volterra derivation, hence of all polynomial first integrals of its corresponding Volterra system of differential equations. The Volterra system plays a significant role in plasma physics and population biology.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269519
@article{bwmeta1.element.doi-10_2478_s11533-011-0032-0,
     author = {Janusz Zieli\'nski},
     title = {The five-variable Volterra system},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {888-896},
     zbl = {1236.13024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0032-0}
}
Janusz Zieliński. The five-variable Volterra system. Open Mathematics, Tome 9 (2011) pp. 888-896. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0032-0/

[1] Bogoyavlenskij O.I., Algebraic constructions of integrable dynamical systems - extension of the Volterra system, Uspekhi Mat. Nauk, 1991, 46(3), 3–48 (in Russian)

[2] Bogoyavlenskij O.I., Integrable Lotka-Volterra systems, Regul. Chaotic Dyn., 2008, 13(6), 543–556 http://dx.doi.org/10.1134/S1560354708060051 | Zbl 1229.37097

[3] Deveney J.K., Finston D.R., A proper G a action on C 5 which is not locally trivial, Proc. Amer. Math. Soc., 1995, 123(3), 651–655 | Zbl 0832.14036

[4] Itoh Y., Integrals of a Lotka-Volterra system of odd number of variables, Progr. Theoret. Phys., 1987, 78(3), 507–510 http://dx.doi.org/10.1143/PTP.78.507

[5] Maciejewski A.J., Moulin Ollagnier J., Nowicki A., Strelcyn J.-M., Around Jouanolounon-integrability theorem, Indag. Math., 2000, 11(2), 239–254 http://dx.doi.org/10.1016/S0019-3577(00)89081-3 | Zbl 0987.34005

[6] Moulin Ollagnier J., Nowicki A., Polynomial algebra of constants of the Lotka-Volterra system, Colloq. Math., 1999, 81(2), 263–270 | Zbl 1004.12004

[7] Nowicki A., Polynomial Derivations and their Rings of Constants, Uniwersytet Mikołaja Kopernika, Toruń, 1994 | Zbl 1236.13023

[8] Nowicki A., The fourteenth problem of Hilbert for polynomial derivations, In: Differential Galois Theory, Bedlewo, 2001, Banach Center Publ., 58, Polish Academy of Sciences, Warsaw, 2002, 177–188 http://dx.doi.org/10.4064/bc58-0-13 | Zbl 1029.13015

[9] Nowicki A., A factorisable derivation of polynomial rings in n variables (in press) | Zbl 1273.13048

[10] Nowicki A., Zieliński J., Rational constants of monomial derivations, J. Algebra, 2006, 302(1), 387–418 http://dx.doi.org/10.1016/j.jalgebra.2006.02.034 | Zbl 1119.13021

[11] Ossowski P., Zieliński J., Polynomial algebra of constants of the four variable Lotka-Volterra system, Colloq. Math., 2010, 120(2), 299–309 http://dx.doi.org/10.4064/cm120-2-9 | Zbl 1207.13016

[12] Zieliński J., Factorizable derivations and ideals of relations, Comm. Algebra, 2007, 35(3), 983–997 http://dx.doi.org/10.1080/00927870601117639 | Zbl 1171.13013