On the almost monotone convergence of sequences of continuous functions
Zbigniew Grande
Open Mathematics, Tome 9 (2011), p. 772-777 / Harvested from The Polish Digital Mathematics Library

A sequence (f n)n of functions f n: X → ℝ almost decreases (increases) to a function f: X → ℝ if it pointwise converges to f and for each point x ∈ X there is a positive integer n(x) such that f n+1(x) ≤ f n (x) (f n+1(x) ≥ f n(x)) for n ≥ n(x). In this article I investigate this convergence in some families of continuous functions.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269235
@article{bwmeta1.element.doi-10_2478_s11533-011-0030-2,
     author = {Zbigniew Grande},
     title = {On the almost monotone convergence of sequences of continuous functions},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {772-777},
     zbl = {1232.26003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0030-2}
}
Zbigniew Grande. On the almost monotone convergence of sequences of continuous functions. Open Mathematics, Tome 9 (2011) pp. 772-777. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0030-2/

[1] Bruckner A.M., Differentiation of Real Functions, Lecture Notes in Math., 659, Springer, Berlin, 1978 | Zbl 0382.26002

[2] Császár Á., Extensions of discrete and equal Baire functions, Acta Math. Hungar., 1990, 56(1–2), 93–99 http://dx.doi.org/10.1007/BF01903710 | Zbl 0731.54015

[3] Császár Á., Laczkovich M., Discrete and equal convergence, Stud. Sci. Math. Hung., 1975, 10(3–4), 463–472

[4] Császár Á., Laczkovich M., Some remarks on discrete Baire classes, Acta Math. Acad. Sci. Hung., 1979, 33(1–2), 51–70 http://dx.doi.org/10.1007/BF01903381 | Zbl 0401.54010

[5] Császár Á., Laczkovich M., Discrete and equal Baire classes, Acta Math. Hungar., 1990, 55(1–2), 165–178 http://dx.doi.org/10.1007/BF01951400 | Zbl 0718.54032

[6] Grande Z., On discrete limits of sequences of approximately continuous functions and T ae-continuous functions, Acta Math. Hungar., 2001, 92(1–2), 39–50 http://dx.doi.org/10.1023/A:1013747909952 | Zbl 1002.26002

[7] Petruska G., Laczkovich M., A theorem on approximately continuous functions, Acta Math. Acad. Sci. Hungar., 1973, 24(3–4), 383–387 http://dx.doi.org/10.1007/BF01958051 | Zbl 0289.26004

[8] Preiss D., Limits of approximately continuous functions, Czechoslovak Math. J., 1971, 21(96)(3), 371–372 | Zbl 0221.26005

[9] Sikorski R., Real Functions I, Monografie Matematyczne, 35, PWN, Warszawa, 1958 (in Polish) | Zbl 0093.05603

[10] Tall F.D., The density topology, Pacific J. Math., 1976, 62(1), 275–284 | Zbl 0305.54039