Quotients of peripherally continuous functions
Jolanta Kosman
Open Mathematics, Tome 9 (2011), p. 765-771 / Harvested from The Polish Digital Mathematics Library

We characterize the family of quotients of peripherally continuous functions. Moreover, we study cardinal invariants related to quotients in the case of peripherally continuous functions and the complement of this family.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269310
@article{bwmeta1.element.doi-10_2478_s11533-011-0027-x,
     author = {Jolanta Kosman},
     title = {Quotients of peripherally continuous functions},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {765-771},
     zbl = {1232.26004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0027-x}
}
Jolanta Kosman. Quotients of peripherally continuous functions. Open Mathematics, Tome 9 (2011) pp. 765-771. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0027-x/

[1] Bartoszyński T., Judah H., Set Theory: on the Structure of the Real Line, A.K. Peters, Wellesley, 1995 | Zbl 0834.04001

[2] Ciesielski K., Maliszewski A., Cardinal invariants concerning bounded families of extendable and almost continuous functions, Proc. Amer. Math. Soc., 1998, 126(2), 471–479 http://dx.doi.org/10.1090/S0002-9939-98-04098-2 | Zbl 0899.26001

[3] Ciesielski K., Natkaniec T., Algebraic properties of the class of Sierpiński-Zygmund functions, Topology Appl., 1997, 79(1), 75–99 http://dx.doi.org/10.1016/S0166-8641(96)00128-9 | Zbl 0890.26002

[4] Ciesielski K., Recław I., Cardinal invariants concerning extendable and peripherally continuous functions, Real Anal. Exchange, 1995/96, 21(2), 459–472 | Zbl 0879.26005

[5] Jałocha J., Quotients of quasi-continuous functions, J. Appl. Anal., 2000, 6(2), 251–258 http://dx.doi.org/10.1515/JAA.2000.251 | Zbl 0966.26004

[6] Jordan F., Cardinal invariants connected with adding real functions, Real Anal. Exchange, 1996/97, 22(2), 696–713 | Zbl 0942.26005

[7] Kosman J., Maliszewski A., Quotients of Darboux-like functions, Real Anal. Exchange, 2009/10, 35(1), 243–251 | Zbl 1203.26004

[8] Natkaniec T., Almost continuity, Real Anal. Exchange, 1991/92, 17(2), 462–520

[9] Rudin M.E., Martin’s Axiom, In: Handbook of Mathematical Logic, Stud. Logic Found. Math., 90, North-Holland, Amsterdam-New York-Oxford, 1977, 491–501 http://dx.doi.org/10.1016/S0049-237X(08)71111-X