We obtain a series of new integral formulae for a distribution of arbitrary codimension (and its orthogonal complement) given on a closed Riemannian manifold, which start from the formula by Walczak (1990) and generalize ones for foliations by several authors. For foliations on space forms our formulae reduce to the classical type formulae by Brito-Langevin-Rosenberg (1981) and Brito-Naveira (2000). The integral formulae involve the conullity tensor of a distribution, and certain components of the curvature tensor. The formulae also deal with a set of arbitrary functions depending on the scalar invariants of the co-nullity tensor. For a special choice of the functions our formulae involve the Newton transformations of the co-nullity tensor.
@article{bwmeta1.element.doi-10_2478_s11533-011-0026-y, author = {Vladimir Rovenski}, title = {Integral formulae for a Riemannian manifold with two orthogonal distributions}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {558-577}, zbl = {1238.53015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0026-y} }
Vladimir Rovenski. Integral formulae for a Riemannian manifold with two orthogonal distributions. Open Mathematics, Tome 9 (2011) pp. 558-577. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0026-y/
[1] Andrzejewski K., Walczak P.G., The Newton transformation and new integral formulae for foliated manifolds, Ann. Global Anal. Geom., 2009, 37(2), 103–111 http://dx.doi.org/10.1007/s10455-009-9175-7 | Zbl 1189.53028
[2] Andrzejewski K., Walczak P.G., Extrinsic curvatures of distributions of arbitrary codimension, J. Geom. Phys., 2010, 60(5), 708–713 http://dx.doi.org/10.1016/j.geomphys.2010.01.003 | Zbl 1211.53058
[3] Asimov D., Average Gaussian curvature of leaves of foliations, Bull. Amer. Math. Soc., 1978, 84(1), 131–133 http://dx.doi.org/10.1090/S0002-9904-1978-14439-5 | Zbl 0393.53021
[4] Berger M., A Panoramic View of Riemannian Geometry, Springer, Berlin, 2003 | Zbl 1038.53002
[5] Brîz€nescu V., Slobodeanu R., Holomorphicity and the Walczak formula on Sasakian manifolds, J. Geom. Phys., 2006, 57(1), 193–207 http://dx.doi.org/10.1016/j.geomphys.2006.02.011 | Zbl 1160.53359
[6] Brito F., Langevin R., Rosenberg H., Intégrales de courbure sur des variétés feuilletées, J. Differential Geom., 1981, 16(1), 19–50 | Zbl 0472.53049
[7] Brito F.B., Naveira A.M., Total extrinsic curvature of certain distributions on closed spaces of constant curvature, Ann. Global Anal. Geom., 2000, 18(3–4), 371–383 http://dx.doi.org/10.1023/A:1006784702342 | Zbl 0974.53018
[8] Gray A., Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 1967, 16(7), 715–737 | Zbl 0147.21201
[9] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integrals and Series. Vol. 3: More Special Functions, Gordon and Breach Sci. Publ., New York, 1990 | Zbl 0967.00503
[10] Ranjan A., Structural equations and an integral formula for foliated manifolds, Geom. Dedicata, 1986, 20(3), 85–91 | Zbl 0578.53025
[11] Reeb G., Sur la courbure moyenne des variétés intégrales d’une équation de Pfaff ω = 0, C. R. Math. Acad. Sci. Paris, 1950, 231, 101–102 | Zbl 0040.24401
[12] Rovenski V., Walczak P., Integral formulae for foliations on Riemannian manifolds, In: Differential Geometry and its Applications, Olomouc, August 27–31, 2007, World Scientific, Hackensack, 2008, 203–214 | Zbl 1165.53018
[13] Rovenski V., Walczak P., Variational formulae for the total mean curvatures of a codimension-one distribution, In: Differential Geometry, 8th International Colloquium, Santiago de Compostela, July 7–11, 2008, World Scientific, Hackensack, 2009, 83–93 http://dx.doi.org/10.1142/9789814261173_0008
[14] Rovenski V., Walczak P., Extrinsic geometric flows on foliated manifolds I, preprint available at http://arxiv.org/abs/1003.1607v2
[15] Rovenski V., Walczak P.G., Integral formulae on foliated symmetric spaces, Math. Ann. (in press), DOI: 10.1007/s00208-011-0637-4 | Zbl 1246.53039
[16] Rovenskii V., Foliations on Riemannian Manifolds and Submanifolds, Birkhäuser, Boston, 1998 | Zbl 0958.53021
[17] Svensson M., Holomorphic foliations, harmonic morphisms and the Walczak formula, J. Lond. Math. Soc., 2003, 68(3), 781–794 http://dx.doi.org/10.1112/S0024610703004630 | Zbl 1062.53020
[18] Tondeur P., Geometry of Foliations, Monogr. Math., 90, Birkhäuser, Basel, 1997 | Zbl 0905.53002
[19] Walczak P.G., An integral formula for a Riemannian manifold with two orthogonal complementary distributions, Colloq. Math., 1990, 58(2), 243–252 | Zbl 0766.53024