Monotone weak Lindelöfness
Maddalena Bonanzinga ; Filippo Cammaroto ; Bruno Pansera
Open Mathematics, Tome 9 (2011), p. 583-592 / Harvested from The Polish Digital Mathematics Library

The definition of monotone weak Lindelöfness is similar to monotone versions of other covering properties: X is monotonically weakly Lindelöf if there is an operator r that assigns to every open cover U a family of open sets r(U) so that (1) ∪r(U) is dense in X, (2) r(U) refines U, and (3) r(U) refines r(V) whenever U refines V. Some examples and counterexamples of monotonically weakly Lindelöf spaces are given and some basic properties such as the behavior with respect to products and subspaces are discussed.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269415
@article{bwmeta1.element.doi-10_2478_s11533-011-0025-z,
     author = {Maddalena Bonanzinga and Filippo Cammaroto and Bruno Pansera},
     title = {Monotone weak Lindel\"ofness},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {583-592},
     zbl = {1237.54020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0025-z}
}
Maddalena Bonanzinga; Filippo Cammaroto; Bruno Pansera. Monotone weak Lindelöfness. Open Mathematics, Tome 9 (2011) pp. 583-592. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0025-z/

[1] Bennett H., Lutzer D., Matveev M., The monotone Lindelöf property and separability in ordered spaces, Topology Appl., 2005, 151(1–3), 180–186 http://dx.doi.org/10.1016/j.topol.2004.05.015 | Zbl 1069.54021

[2] Engelking R., General Topology, 2nd ed., Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989

[3] Frolik Z., Generalizations of compact and Lindelöf spaces, Czechoslovak Math. J., 1959, 9(84) (2), 172–217 (in Russian) | Zbl 0098.14201

[4] Ge Y., Good C., A note on monotone countable paracompactness, Comment. Math. Univ. Carolin., 2001, 42(4), 771–778 | Zbl 1090.54504

[5] Good C., Haynes L., Monotone versions of countable paracompactness, Topology Appl., 2007, 154(3), 734–740 http://dx.doi.org/10.1016/j.topol.2006.08.006 | Zbl 1118.54012

[6] Good C., Knight R.W., Monotonically countably paracompact, collectionwise Hausdorff spaces and measurable cardinals, Proc. Amer. Math. Soc., 2006, 134(2), 591–597 http://dx.doi.org/10.1090/S0002-9939-05-07965-7 | Zbl 1086.54013

[7] Good C., Knight R., Stares I., Monotone countable paracompactness, Topology Appl., 2000, 101(3), 281–298 http://dx.doi.org/10.1016/S0166-8641(98)00128-X | Zbl 0938.54026

[8] Gruenhage G., Generalized metric spaces, In: Handbook of the Set-Theoretic Topology, North-Holland, Amsterdam-New York-Oxford, 1984, 423–501

[9] Gruenhage G., Monotonically compact and monotonically Lindelöf spaces, Questions Answers Gen. Topology, 2008, 26(2), 121–130 | Zbl 1163.54017

[10] Gruenhage G., Monotonically compact T 2-spaces are metrizable, Questions Answers Gen. Topology, 2009, 27(1), 57–59 | Zbl 1173.54011

[11] Junnila H.J.K., Künzi H.-P.A., Ortho-bases and monotonic properties, Proc. Amer. Math. Soc., 1993, 119(4), 1335–1345 http://dx.doi.org/10.1090/S0002-9939-1993-1165056-6 | Zbl 0822.54023

[12] Levy R., Matveev M., Some more examples of monotonically Lindelöf and not monotonically Lindelöf spaces, Topology Appl., 2007, 154(11), 2333–2343 http://dx.doi.org/10.1016/j.topol.2007.04.002 | Zbl 1134.54006

[13] Levy R., Matveev M., On monotone Lindelöfness of countable spaces, Comment. Math. Univ. Carolin., 2008, 49(1), 155–161 | Zbl 1212.54077

[14] Levy R., Matveev M., Some questions on monotone Lindelöfness, Questions Answers Gen. Topology, 2008, 26(1), 13–27 | Zbl 1149.54311

[15] Matveev M., A monotonically Lindelöf space need not be monotonically normal, 1994, preprint

[16] Pan C., Monotonically CP spaces, Questions Answers Gen. Topology, 1987, 15(1), 25–32

[17] Stares I.S., Versions of monotone paracompactness, In: Papers on General Topology and Applications, Gorham, August 10–13, 1995, Ann. N. Y. Acad Sci., 1996, 806, 433–438