The definition of monotone weak Lindelöfness is similar to monotone versions of other covering properties: X is monotonically weakly Lindelöf if there is an operator r that assigns to every open cover U a family of open sets r(U) so that (1) ∪r(U) is dense in X, (2) r(U) refines U, and (3) r(U) refines r(V) whenever U refines V. Some examples and counterexamples of monotonically weakly Lindelöf spaces are given and some basic properties such as the behavior with respect to products and subspaces are discussed.
@article{bwmeta1.element.doi-10_2478_s11533-011-0025-z, author = {Maddalena Bonanzinga and Filippo Cammaroto and Bruno Pansera}, title = {Monotone weak Lindel\"ofness}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {583-592}, zbl = {1237.54020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0025-z} }
Maddalena Bonanzinga; Filippo Cammaroto; Bruno Pansera. Monotone weak Lindelöfness. Open Mathematics, Tome 9 (2011) pp. 583-592. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0025-z/
[1] Bennett H., Lutzer D., Matveev M., The monotone Lindelöf property and separability in ordered spaces, Topology Appl., 2005, 151(1–3), 180–186 http://dx.doi.org/10.1016/j.topol.2004.05.015 | Zbl 1069.54021
[2] Engelking R., General Topology, 2nd ed., Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989
[3] Frolik Z., Generalizations of compact and Lindelöf spaces, Czechoslovak Math. J., 1959, 9(84) (2), 172–217 (in Russian) | Zbl 0098.14201
[4] Ge Y., Good C., A note on monotone countable paracompactness, Comment. Math. Univ. Carolin., 2001, 42(4), 771–778 | Zbl 1090.54504
[5] Good C., Haynes L., Monotone versions of countable paracompactness, Topology Appl., 2007, 154(3), 734–740 http://dx.doi.org/10.1016/j.topol.2006.08.006 | Zbl 1118.54012
[6] Good C., Knight R.W., Monotonically countably paracompact, collectionwise Hausdorff spaces and measurable cardinals, Proc. Amer. Math. Soc., 2006, 134(2), 591–597 http://dx.doi.org/10.1090/S0002-9939-05-07965-7 | Zbl 1086.54013
[7] Good C., Knight R., Stares I., Monotone countable paracompactness, Topology Appl., 2000, 101(3), 281–298 http://dx.doi.org/10.1016/S0166-8641(98)00128-X | Zbl 0938.54026
[8] Gruenhage G., Generalized metric spaces, In: Handbook of the Set-Theoretic Topology, North-Holland, Amsterdam-New York-Oxford, 1984, 423–501
[9] Gruenhage G., Monotonically compact and monotonically Lindelöf spaces, Questions Answers Gen. Topology, 2008, 26(2), 121–130 | Zbl 1163.54017
[10] Gruenhage G., Monotonically compact T 2-spaces are metrizable, Questions Answers Gen. Topology, 2009, 27(1), 57–59 | Zbl 1173.54011
[11] Junnila H.J.K., Künzi H.-P.A., Ortho-bases and monotonic properties, Proc. Amer. Math. Soc., 1993, 119(4), 1335–1345 http://dx.doi.org/10.1090/S0002-9939-1993-1165056-6 | Zbl 0822.54023
[12] Levy R., Matveev M., Some more examples of monotonically Lindelöf and not monotonically Lindelöf spaces, Topology Appl., 2007, 154(11), 2333–2343 http://dx.doi.org/10.1016/j.topol.2007.04.002 | Zbl 1134.54006
[13] Levy R., Matveev M., On monotone Lindelöfness of countable spaces, Comment. Math. Univ. Carolin., 2008, 49(1), 155–161 | Zbl 1212.54077
[14] Levy R., Matveev M., Some questions on monotone Lindelöfness, Questions Answers Gen. Topology, 2008, 26(1), 13–27 | Zbl 1149.54311
[15] Matveev M., A monotonically Lindelöf space need not be monotonically normal, 1994, preprint
[16] Pan C., Monotonically CP spaces, Questions Answers Gen. Topology, 1987, 15(1), 25–32
[17] Stares I.S., Versions of monotone paracompactness, In: Papers on General Topology and Applications, Gorham, August 10–13, 1995, Ann. N. Y. Acad Sci., 1996, 806, 433–438