Threefolds with big and nef anticanonical bundles II
Priska Jahnke ; Thomas Peternell ; Ivo Radloff
Open Mathematics, Tome 9 (2011), p. 449-488 / Harvested from The Polish Digital Mathematics Library

In a follow-up to our paper [Threefolds with big and nef anticanonical bundles I, Math. Ann., 2005, 333(3), 569–631], we classify smooth complex projective threefolds Xwith −K X big and nef but not ample, Picard number γ(X) = 2, and whose anticanonical map is small. We assume also that the Mori contraction of X and of its flop X + are not both birational.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269216
@article{bwmeta1.element.doi-10_2478_s11533-011-0023-1,
     author = {Priska Jahnke and Thomas Peternell and Ivo Radloff},
     title = {Threefolds with big and nef anticanonical bundles II},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {449-488},
     zbl = {1250.14030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0023-1}
}
Priska Jahnke; Thomas Peternell; Ivo Radloff. Threefolds with big and nef anticanonical bundles II. Open Mathematics, Tome 9 (2011) pp. 449-488. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0023-1/

[1] Arbarello E., Cornalba M., Griffiths P.A., Harris J., Geometry of Algebraic Curves, Grundlehren Math. Wiss., 267, Springer, New York, 1985 | Zbl 0559.14017

[2] Bertini E., Introduzione alla Geometria Proiettiva degli Iperspazi, Enrico Spoerri, Pisa, 1907 | Zbl 38.0582.02

[3] Chel’tsov I.A., Bounded three-dimensional Fano varieties of integer index, Math. Notes, 1999, 66(3), 360–365 http://dx.doi.org/10.1007/BF02676446

[4] Hartshorne R., On the classification of algebraic space curves II, In: Algebraic Geometry, Brunswick, 1985, Proc. Sympos. Pure Math., 46(1), AMS, Providence, 1987, 145–164

[5] Iskovskikh V.A., Double projection from a line onto Fano threefolds of the first kind, Math. USSR-Sb., 1990, 66(1), 265–284 http://dx.doi.org/10.1070/SM1990v066n01ABEH001172 | Zbl 0691.14027

[6] Iskovskikh V.A., Prokhorov Yu.G., Fano Varieties, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999

[7] Jahnke P., Peternell T., Almost del Pezzo manifolds, Adv. Geom., 2008, 8(3), 387–411 http://dx.doi.org/10.1515/ADVGEOM.2008.026 | Zbl 1149.14035

[8] Jahnke P., Peternell T., Radloff I., Threefolds with big and nef anticanonical bundles I, Math. Ann., 2005, 333(3), 569–631 http://dx.doi.org/10.1007/s00208-005-0682-y | Zbl 1081.14054

[9] Jahnke P., Radloff I., Gorenstein Fano threefolds with base points in the anticanonical system. Compos. Math., 2006, 142(2), 422–432 http://dx.doi.org/10.1112/S0010437X05001673 | Zbl 1096.14036

[10] Jahnke P., Radloff I., Terminal Fano threefolds and their smoothings, Math. Z. (in press), DOI: 10.1007/s00209-010-0780-8 | Zbl 1248.14016

[11] Kollár J., Flops, Nagoya Math. J., 1989, 113, 15–36

[12] Kollár J., Flips, flops, minimal models, etc., In: Surv. Differ. Geom., 1, Lehigh University, Bethlehem, 1991, 113–199 | Zbl 0755.14003

[13] Kollár J., Mori S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math., 134, Cambridge University Press, Cambridge, 1998 | Zbl 0926.14003

[14] Mori S., Threefolds whose canonical bundles are not numerically effective, Ann. of Math., 1982, 116(1), 133–176 http://dx.doi.org/10.2307/2007050 | Zbl 0557.14021

[15] Namikawa Y., Smoothing Fano 3-folds. J. Algebraic Geom., 1997, 6(2), 307–324 | Zbl 0906.14019

[16] Przhyjalkowski V.V., Cheltsov I.A., Shramov K.A., Hyperelliptic and trigonal Fano threefolds, Izv. Math., 2005, 69(2), 365–421 http://dx.doi.org/10.1070/IM2005v069n02ABEH000533 | Zbl 1081.14059

[17] Reid M., Minimal models of canonical 3-folds, In: Algebraic Varieties and Analytic Varieties, Tokyo, 1981, Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983, 131–180

[18] Shin K.-H., 3-dimensional Fano varieties with canonical singularities. Tokyo J. Math., 1989, 12(2), 375–385 http://dx.doi.org/10.3836/tjm/1270133187 | Zbl 0708.14025

[19] Takeuchi K., Some birational maps of Fano 3-folds, Compos. Math., 1989, 71(3), 265–283 | Zbl 0712.14025