We prove the non-existence of real hypersurfaces in complex two-plane Grassmannians whose normal Jacobi operator is of Codazzi type.
@article{bwmeta1.element.doi-10_2478_s11533-011-0022-2, author = {Carlos Machado and Juan Dios P\'erez and Imsoon Jeong and Young Suh}, title = {Real hypersurfaces in complex two-plane Grassmannians whose normal Jacobi operator is of Codazzi type}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {578-582}, zbl = {1247.53073}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0022-2} }
Carlos Machado; Juan Dios Pérez; Imsoon Jeong; Young Suh. Real hypersurfaces in complex two-plane Grassmannians whose normal Jacobi operator is of Codazzi type. Open Mathematics, Tome 9 (2011) pp. 578-582. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0022-2/
[1] Alekseevskii D.V., Compact quaternion space, Funct. Anal. Appl., 1968, 2(2), 106–114 http://dx.doi.org/10.1007/BF01075944
[2] Berndt J., Console S., Olmos C., Submanifolds and Holonomy, Chapman Hall/CRC Res. Notes Math., 434, Chapman & Hall/CRC, Boca Raton, 2003 http://dx.doi.org/10.1201/9780203499153
[3] Berndt J., Suh Y.J., Real hypersurfaces in complex two-plane Grassmannians, Monatsh. Math., 1999, 127(1), 1–14 http://dx.doi.org/10.1007/s006050050018 | Zbl 0920.53016
[4] Berndt J., Suh Y.J., Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians, Monatsh. Math., 2002, 137(2), 87–98 http://dx.doi.org/10.1007/s00605-001-0494-4 | Zbl 1015.53034
[5] Jeong I., Kim H.J., Suh Y.J., Real hypersurfaces in complex two-plane Grassmannians with parallel normal Jacobi operator, Publ. Math. Debrecen, 2010, 76(1–2), 203–218 | Zbl 1274.53080
[6] Kimura M., Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 1986, 296(1), 137–149 http://dx.doi.org/10.1090/S0002-9947-1986-0837803-2 | Zbl 0597.53021
[7] Martínez A., Pérez J.D., Real hypersurfaces in quaternionic projective space, Ann. Mat. Pura Appl., 1986, 145(1), 355–384 http://dx.doi.org/10.1007/BF01790548 | Zbl 0615.53012