For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y ⊂ X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelöf spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelöf. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense σ-compact subspace can have arbitrary extent. It is proved that for any ω 1-monolithic compact space X, if C p(X)is star countable then it is Lindelöf.
@article{bwmeta1.element.doi-10_2478_s11533-011-0018-y, author = {Ofelia Alas and Lucia Junqueira and Jan Mill and Vladimir Tkachuk and Richard Wilson}, title = {On the extent of star countable spaces}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {603-615}, zbl = {1246.54017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0018-y} }
Ofelia Alas; Lucia Junqueira; Jan Mill; Vladimir Tkachuk; Richard Wilson. On the extent of star countable spaces. Open Mathematics, Tome 9 (2011) pp. 603-615. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0018-y/
[1] Alas O.T., Junqueira L.R., Wilson R.G., Countability and star covering properties, Topology Appl., 2011, 158(4), 620–626 http://dx.doi.org/10.1016/j.topol.2010.12.012 | Zbl 1226.54023
[2] Arkhangel’skii A.V., Structure and classification of topological spaces and cardinal invariants, Uspekhi Mat. Nauk, 1978, 33(6), 29–84 (in Russian)
[3] Arkhangel’skii A.V., Topological Function Spaces, Math. Appl. (Soviet Ser.), 78, Kluwer, Dordrecht, 1992
[4] Bonanzinga M., Matveev M.V., Centered-Lindelöfness versus star-Lindelöfness, Comment. Math. Univ. Carolin., 2000, 41(1), 111–122 | Zbl 1037.54502
[5] van Douwen E.K., Reed G.M., Roscoe A.W., Tree I.J., Star covering properties, Topology Appl., 1991, 39(1), 71–103 http://dx.doi.org/10.1016/0166-8641(91)90077-Y | Zbl 0743.54007
[6] Dow A., Junnila H., Pelant J., Weak covering properties of weak topologies, Proc. Lond. Math. Soc., 1997, 75(2), 349–368 http://dx.doi.org/10.1112/S0024611597000385 | Zbl 0886.54014
[7] Engelking R., General Topology, Monografie Matematyczne, 60, PWN, Warszawa, 1977
[8] Ikenaga S., A class which contains Lindelöf spaces, separable spaces and countably compact spaces, Memoirs of Numazu College of Technology, 1983, 18, 105–108
[9] Ikenaga S., Somepropertiesofω-n-starspaces, Research Reports of Nara Technical College, 1987, 23, 53–57
[10] Ikenaga S., Topological concepts between ‘Lindelöf’ and ‘pseudo-Lindelöf’, Research Reports of Nara Technical College, 1990, 26, 103–108
[11] Ikenaga S., Tani T., On a topological concept between countable compactness and pseudocompactness, Memoirs of Numazu College of Technology, 1980, 15, 139–142
[12] Matveev M.V., A survey on star covering properties, Topology Atlas, 1998, preprint #330, available at http://at.yorku.ca/v/a/a/a/19.htm
[13] Matveev M.V., How weak is weak extent?, Topology Appl., 2002, 119(2), 229–232 http://dx.doi.org/10.1016/S0166-8641(01)00061-X | Zbl 0986.54003
[14] van Mill J., Tkachuk V.V., Wilson R.G., Classes defined by stars and neighbourhood assignments, Topology Appl., 2007, 154(10), 2127–2134 http://dx.doi.org/10.1016/j.topol.2006.03.029 | Zbl 1131.54022
[15] Shakhmatov D.B., On pseudocompact spaces with point-countable base, Dokl. Akad. Nauk SSSR, 1984, 30(3), 747–751 | Zbl 0598.54010
[16] Tkachuk V.V., Monolithic spaces and D-spaces revisited, Topology Appl., 2009, 156(4), 840–846 http://dx.doi.org/10.1016/j.topol.2008.11.001 | Zbl 1165.54009
[17] Williams N.H., Combinatorial Set Theory, Stud. Logic Found. Math., 91, North-Holland, Amsterdam-New York-Oxford, 1977 http://dx.doi.org/10.1016/S0049-237X(08)70663-3