It is known that cyclic configurations of a planar polygonal linkage are critical points of the signed area function. In the paper we give an explicit formula of the Morse index for the signed area of a cyclic configuration. We show that it depends not only on the combinatorics of a cyclic configuration, but also on its metric properties.
@article{bwmeta1.element.doi-10_2478_s11533-011-0011-5, author = {Gaiane Panina and Alena Zhukova}, title = {Morse index of a cyclic polygon}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {364-377}, zbl = {1242.52018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0011-5} }
Gaiane Panina; Alena Zhukova. Morse index of a cyclic polygon. Open Mathematics, Tome 9 (2011) pp. 364-377. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0011-5/
[1] Cerf J., La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Publ. Math. Inst. Hautes Études Sci., 1970, 39, 5–173 http://dx.doi.org/10.1007/BF02684687 | Zbl 0213.25202
[2] Elerdashvili E., Jibladze M., Khimshiashvili G., Cyclic configurations of pentagon linkages, Bull. Georgian Acad. Sci., 2008, 2(4), 29–32 | Zbl 1193.52012
[3] Farber M., Schütz, D., Homology of planar polygon spaces, Geom. Dedicata, 2007, 125(1), 75–92. http://dx.doi.org/10.1007/s10711-007-9139-7 | Zbl 1132.52024
[4] Khimshiashvili G., Configuration spaces and signature formulas, J. Math. Sci. (N. Y.), 2009, 160(6), 727–736 http://dx.doi.org/10.1007/s10958-009-9524-x | Zbl 1181.14061
[5] Panina G., Khimshiashvili G., Cyclic polygons are critical points of area, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 2008, 360, 238–245 | Zbl 1193.52015
[6] Pólya G., Mathematics and Plausible Reasoning. Vol. 1: Induction and Analogy in Mathematics, Princeton University Press, Princeton, 1954
[7] Zvonkine D., Configuration spaces of hinge constructions. Russ. J. Math. Phys., 1997, 5(2), 247–266 | Zbl 0924.57016