In 1909, Hilbert proved that for each fixed k, there is a number g with the following property: Every integer N ≥ 0 has a representation in the form N = x 1k + x 2k + … + x gk, where the x i are nonnegative integers. This resolved a conjecture of Edward Waring from 1770. Hilbert’s proof is somewhat unsatisfying, in that no method is given for finding a value of g corresponding to a given k. In his doctoral thesis, Rieger showed that by a suitable modification of Hilbert’s proof, one can give explicit bounds on the least permissible value of g. We show how to modify Rieger’s argument, using ideas of F. Dress, to obtain a better explicit bound. While far stronger bounds are available from the powerful Hardy-Littlewood circle method, it seems of some methodological interest to examine how far elementary techniques of this nature can be pushed.
@article{bwmeta1.element.doi-10_2478_s11533-011-0009-z, author = {Paul Pollack}, title = {On Hilbert's solution of Waring's problem}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {294-301}, zbl = {1276.11161}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0009-z} }
Paul Pollack. On Hilbert’s solution of Waring’s problem. Open Mathematics, Tome 9 (2011) pp. 294-301. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0009-z/
[1] Bredikhin B.M., Grishina T.I., An elementary estimate of G(n) in Waring’s problem, Mat. Zametki, 1978, 24(1), 7–18 (in Russian) | Zbl 0384.10010
[2] Dress F., Méthodes élémentaires dans le problème de Waring pour les entiers, Journées Arithmétiques Françaises, Mai 1971, Université de Provence, Marseille, 1971
[3] Dress F., Théorie additive des nombres, problème de Waring et théorème de Hilbert, Enseignement Math., 1972, 18, 175–190, 301–302 | Zbl 0247.10029
[4] Hardy G.H., Some Famous Problems of the Theory of Numbers and in Particular Waring’s Problem, Clarendon Press, Oxford, 1920
[5] Hardy G.H., Littlewood J.E., Some problems of “Partitio Numerorum” I: a new solution of Waring’s problem, Göttingen Nachr., 1920, 33–54 | Zbl 47.0114.02
[6] Hardy G.H., Wright E.M., An Introduction to the Theory of Numbers, 6th ed., Oxford University Press, Oxford, 2008 | Zbl 1159.11001
[7] Hausdorff F., Zur Hilbertschen Lösung des Waringschen Problems, Math. Ann., 1909, 67(3), 301–305 http://dx.doi.org/10.1007/BF01450406 | Zbl 40.0237.01
[8] Hua L.K., Introduction to Number Theory, Springer, Berlin-New York, 1982
[9] Linnik Yu.V., An elementary solution of the problem of Waring by Schnirelman’s method, Mat. Sb., 1943, 12(54)(2), 225–230 (in Russian) | Zbl 0063.03580
[10] Nesterenko Yu.V., On Waring’s problem (elementary methods), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 2005, 322, Trudy po Teorii Chisel, 149–175 (in Russian) | Zbl 1072.11073
[11] Newman D.J., A simplified proof of Waring’s conjecture, Michigan Math. J., 1960, 7(3), 291–295 http://dx.doi.org/10.1307/mmj/1028998439 | Zbl 0094.02702
[12] Rieger G.J., Zur Hilbertschen Lösung des Waringschen Problems: Abschätzung von g(n), Mitt. Math. Sem. Giessen, 1953, #44 | Zbl 0053.35902
[13] Rieger G.J., Zur Hilbertschen Lösung des Waringschen Problems: Abschätzung von g(n), Arch. Math. (Basel), 1953, 4, 275–281 | Zbl 0053.35902
[14] Rieger G.J., Zum Waringschen Problem für algebraische Zahlen and Polynome, J. Reine Angew. Math., 1955, 195, 108–120
[15] Stridsberg E., Sur la démonstration de M. Hilbert du théorème de Waring, Math. Ann., 1912, 72(2), 145–152 http://dx.doi.org/10.1007/BF01667319
[16] Vaughan R.C., The Hardy-Littlewood Method, 2nd ed., Cambridge Tracts in Math., 125, Cambridge University Press, Cambridge, 1997 | Zbl 0868.11046
[17] Waring E., Meditationes Algebraicæ, American Mathematical Society, Providence, 1991
[18] Wright E.M., An easier Waring’s problem, J. London Math. Soc., 1934, 9(4), 267–272 http://dx.doi.org/10.1112/jlms/s1-9.4.267 | Zbl 0010.10306