We prove a dimension compression estimate for homeomorphic mappings of exponentially integrable distortion via a modulus of continuity result by D. Herron and P. Koskela [Mappings of finite distortion: gauge dimension of generalized quasicircles, Illinois J. Math., 2003, 47(4), 1243–1259]. The essential sharpness of our estimate is demonstrated by an example.
@article{bwmeta1.element.doi-10_2478_s11533-011-0008-0, author = {Aleksandra Zapadinskaya}, title = {Generalized dimension compression under mappings of exponentially integrable distortion}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {356-363}, zbl = {1254.30023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0008-0} }
Aleksandra Zapadinskaya. Generalized dimension compression under mappings of exponentially integrable distortion. Open Mathematics, Tome 9 (2011) pp. 356-363. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0008-0/
[1] Astala K., Gill J.T., Rohde S., Saksman E., Optimal regularity for planar mappings of finite distortion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2010, 27(1), 1–19 http://dx.doi.org/10.1016/j.anihpc.2009.01.012 | Zbl 1191.30007
[2] Astala K., Iwaniec T., Koskela P., Martin G., Mappings of BMO-bounded distortion, Math. Ann., 2000, 317(4), 703–726 http://dx.doi.org/10.1007/PL00004420 | Zbl 0954.30009
[3] Astala K., Iwaniec T., Martin G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Math. Ser., 48, Princeton University Press, Princeton, 2009 | Zbl 1182.30001
[4] Boyarskiĭ B.V., Homeomorphic solutions of Beltrami systems, Dokl. Akad. Nauk SSSR (N.S.), 1955, 102, 661–664
[5] David G., Solutions de l’équation de Beltrami avec ‖µ‖∞ = 1, Ann. Acad. Sci. Fenn. Ser. A I Math., 1988, 13(1), 25–70 | Zbl 0619.30024
[6] Falconer K., Fractal Geometry. Mathematical Foundations and Applications, John Wiley & Sons, Chichester, 1990
[7] Faraco D., Koskela P., Zhong X., Mappings of finite distortion: the degree of regularity, Adv. Math., 2005, 190(2), 300–318 http://dx.doi.org/10.1016/j.aim.2003.12.009 | Zbl 1075.30012
[8] Gehring F.W., The L p-integrability of the partial derivatives of a quasiconformal mapping, Acta Math., 1973, 130(1), 265–277 http://dx.doi.org/10.1007/BF02392268 | Zbl 0258.30021
[9] Herron D.A., Koskela P., Mappings of finite distortion: gauge dimension of generalized quasicircles, Illinois J. Math., 2003, 47(4), 1243–1259 | Zbl 1050.30012
[10] Koskela P., Zapadinskaya A., Zürcher T., Mappings of finite distortion: generalized Hausdorff dimension distortion, J. Geom. Anal., 2010, 20(3), 690–704 http://dx.doi.org/10.1007/s12220-010-9121-8 | Zbl 1205.30017
[11] Rajala T., Zapadinskaya A., Zürcher T., Generalized Hausdorff dimension distortion in Euclidean spaces under Sobolev mappings, preprint available at http://arxiv.org/abs/1007.2091 | Zbl 1252.46024