Groups whose all subgroups are ascendant or self-normalizing
Leonid Kurdachenko ; Javier Otal ; Alessio Russo ; Giovanni Vincenzi
Open Mathematics, Tome 9 (2011), p. 420-432 / Harvested from The Polish Digital Mathematics Library

This paper studies groups G whose all subgroups are either ascendant or self-normalizing. We characterize the structure of such G in case they are locally finite. If G is a hyperabelian group and has the property, we show that every subgroup of G is in fact ascendant provided G is locally nilpotent or non-periodic. We also restrict our study replacing ascendant subgroups by permutable subgroups, which of course are ascendant [Stonehewer S.E., Permutable subgroups of infinite groups, Math. Z., 1972, 125(1), 1–16].

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269092
@article{bwmeta1.element.doi-10_2478_s11533-011-0007-1,
     author = {Leonid Kurdachenko and Javier Otal and Alessio Russo and Giovanni Vincenzi},
     title = {Groups whose all subgroups are ascendant or self-normalizing},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {420-432},
     zbl = {1232.20035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0007-1}
}
Leonid Kurdachenko; Javier Otal; Alessio Russo; Giovanni Vincenzi. Groups whose all subgroups are ascendant or self-normalizing. Open Mathematics, Tome 9 (2011) pp. 420-432. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0007-1/

[1] Baer R., Situation der Untergruppen und Struktur der Gruppe, Sitzungsber. Heidelb. Akad. Wiss., 1933, 2, 12–17 | Zbl 0007.05301

[2] Ballester-Bolinches A., Kurdachenko L.A., Otal J., Pedraza T., Infinite groups with many permutable subgroups, Rev. Mat. Iberoam., 2008, 24(3), 745–764 | Zbl 1175.20036

[3] Belyaev V.V., Groups of Miller-Moreno type, Sibirsk. Math. Zh., 1979, 19(3), 509–514 (in Russian) | Zbl 0409.20027

[4] Belyaev V.V., Sesekin N.F., Infinite groups of Miller-Moreno type, Acta Acad. Math. Sci. Hungar., 1975, 26(3–4), 369–376 (in Russian) http://dx.doi.org/10.1007/BF01902346

[5] Casolo C., Torsion-free groups in which every subgroup is subnormal, Rend. Circ. Mat. Palermo, 2001, 50(2), 321–324 http://dx.doi.org/10.1007/BF02844986 | Zbl 1138.20306

[6] Chernikov S.N., Groups with given properties of systems of infinite subgroups, Ukrainian Math. J., 1967, 19(6), 715–731 http://dx.doi.org/10.1007/BF01105854

[7] Chernikov S.N., On normalizer condition, Mat. Zametki, 1968, 3(1), 45–50 (in Russian) | Zbl 0186.32004

[8] De Falco M., Kurdachenko L.A., Subbotin I.Ya., Groups with only abnormal and subnormal subgroups, Atti Sem. Mat. Fis. Univ. Modena, 1988, 46(2), 435–442

[9] De Falco M., Musella C., A normalizer condition for modular subgroups, In: Advances in Group Theory, Aracne, Rome, 2002, 163–172 | Zbl 1057.20023

[10] Dedekind R., Über Gruppen, deren sämmtliche Theiler Normaltheiler sind, Math. Ann., 1897, 48(4), 548–561 http://dx.doi.org/10.1007/BF01447922

[11] Ebert G., Bauman S., A note on subnormal and abnormal chains, J. Algebra, 1975, 36(2), 287–293 http://dx.doi.org/10.1016/0021-8693(75)90103-9 | Zbl 0314.20019

[12] Fattahi A., Groups with only normal and abnormal subgroups, J. Algebra, 1974, 28(1), 15–19 http://dx.doi.org/10.1016/0021-8693(74)90019-2 | Zbl 0274.20022

[13] Franciosi S., de Giovanni F., On groups with many subnormal subgroups, Note Mat., 1993, 13(1), 99–105 | Zbl 0809.20019

[14] Giordano G., Gruppi con normalizzatori estremali, Matematiche (Catania), 1971, 26, 291–296

[15] Gruenberg K.W., The Engel elements of a soluble group, Illinois J. Math., 1959, 3(2), 151–168 | Zbl 0092.02102

[16] Heineken H., Kurdachenko L.A., Groups with subnormality for all subgroups that are not finitely generated, Ann. Mat. Pura Appl., 1995, 169, 203–232 http://dx.doi.org/10.1007/BF01759354 | Zbl 0848.20023

[17] Huppert B., Zur Sylowstruktur auflösbarer Gruppen, Arch. Math. (Basel), 1961, 12, 161–169

[18] Kurdachenko L.A., Smith H., Groups with all subgroups either subnormal or self-normalizing, J. Pure Appl. Algebra, 2005, 196(2–3), 271–278 http://dx.doi.org/10.1016/j.jpaa.2004.08.005 | Zbl 1078.20026

[19] Miller G.A., Moreno H., Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc., 1903, 4(4), 389–404 | Zbl 34.0173.01

[20] Möhres W., Auflösbarkeit von Gruppen, deren Untergruppen alle subnormal sind, Arch. Math. (Basel), 1990, 54(3), 232–235 | Zbl 0663.20027

[21] Plotkin B.I., On the theory of locally nilpotent groups, Dokl. Akad. Nauk SSSR, 1951, 76, 639–641 (in Russian)

[22] Rose J.S., A Course on Group Theory, Cambridge University Press, Cambridge-New York-Melbourne, 1978 | Zbl 0371.20001

[23] Roseblade J.E., On groups in which every subgroup is subnormal, J. Algebra, 1965, 2(4), 402–412 http://dx.doi.org/10.1016/0021-8693(65)90002-5 | Zbl 0135.04901

[24] Schmidt O.Yu., Groups whose all subgroups are special, Mat. Sb., 1924, 31(3–4), 366–372 (in Russian)

[25] Schmidt O.Yu., On infinite special groups, Mat. Sb., 1940, 8(50)(3), 363–375 (in Russian) | Zbl 66.0070.01

[26] Schmidt R., Subgroup Lattices of Groups, de Gruyter Exp. Math., 14, Walter de Gruyter, Berlin, 1994

[27] Shumyatsky P., Locally finite groups with an automorphism whose centralizer is small, In: Topics in Infinite Groups, Quad. Mat., 8, Dept. Math., Seconda Univ. Napoli, Caserta, 2001, 278–296 | Zbl 1038.20014

[28] Smith H., Torsion-free groups with all subgroups subnormal, Arch. Math. (Basel), 2001, 76(1), 1–6 | Zbl 0982.20018

[29] Smith H., Torsion-free groups with all non-nilpotent subgroups subnormal, In: Topics in Infinite Groups, Quad. Mat., 8, Dept. Math., Seconda Univ. Napoli, Caserta, 2001, 297–308 | Zbl 1017.20017

[30] Smith H., Groups with all non-nilpotent subgroups subnormal, In: Topics in Infinite Groups, Quad. Mat., 8, Dept. Math., Seconda Univ. Napoli, Caserta, 2001, 309–326 | Zbl 1017.20018

[31] Stonehewer S.E., Permutable subgroups of infinite groups, Math. Z., 1972, 125(1), 1–16 http://dx.doi.org/10.1007/BF01111111 | Zbl 0219.20021

[32] Tomkinson M.J., FC-Groups, Pitman Res. Notes Math. Ser., 96, Pitman, Boston-London-Melbourne, 1994