Fredholm determinants
Henry McKean
Open Mathematics, Tome 9 (2011), p. 205-243 / Harvested from The Polish Digital Mathematics Library

The article provides with a down to earth exposition of the Fredholm theory with applications to Brownian motion and KdV equation.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269534
@article{bwmeta1.element.doi-10_2478_s11533-011-0003-5,
     author = {Henry McKean},
     title = {Fredholm determinants},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {205-243},
     zbl = {1223.46002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0003-5}
}
Henry McKean. Fredholm determinants. Open Mathematics, Tome 9 (2011) pp. 205-243. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0003-5/

[1] Ahlfors L.V., Complex Analysis, Internat. Ser. Pure Appl. Math., 3rd ed., McGraw-Hill, New York, 1979 | Zbl 0395.30001

[2] Brown R., A brief account of microscopical observations made in the months of June, July, and August, 1827, on the particles contained in the pollen of plants, etc., Philosophical Magazine, 1828, 4, 161–173

[3] Cameron R.H., Martin W.T., The Wiener measure of Hilbert neighborhoods in the space of real continuous functions, Journal of Mathematics and Physics Mass. Inst. Tech., 1944, 23, 195–209 | Zbl 0060.29103

[4] Conrey J.B., The Riemann hypothesis, Notices Amer. Math. Soc., 2003, 50(3), 341–353 | Zbl 1160.11341

[5] Courant R., Differential and Integral Calculus, vol. 2, Wiley Classics Lib., John Wiley & Sons, New York, 1988

[6] Courant R., Hilbert D., Methoden der Mathematischen Physik, Springer, Berlin, 1931 | Zbl 0001.00501

[7] Dyson F.J., Statistical theory of the energy levels of complex systems. I, J. Mathematical Phys., 1962, 3, 140–156 http://dx.doi.org/10.1063/1.1703773 | Zbl 0105.41604

[8] Dyson F.J., Fredholm determinants and inverse scattering problems, Comm. Math. Phys., 1976, 47(2), 171–183 http://dx.doi.org/10.1007/BF01608375 | Zbl 0323.33008

[9] Einstein A., Über die von der molekularkinetischen Theorie der Wärme gefordete Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys., 1905, 17, 549–560; reprinted in: Investigations on the Theory of the Brownian Movement, Dover, New York, 1956 http://dx.doi.org/10.1002/andp.19053220806 | Zbl 36.0975.01

[10] Fredholm I., Sur une classe d’équations fonctionelles, Acta Math., 1903, 27(1), 365–390 http://dx.doi.org/10.1007/BF02421317 | Zbl 34.0422.02

[11] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., Methods for solving the Korteweg-deVries equation, Phys. Rev. Lett., 19(19), 1967, 1095–1097 http://dx.doi.org/10.1103/PhysRevLett.19.1095 | Zbl 1061.35520

[12] Jimbo M., Miwa T., Môri Y., Sato M., Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Phys. D, 1980, 1(1), 80–158 http://dx.doi.org/10.1016/0167-2789(80)90006-8 | Zbl 1194.82007

[13] Kato T., A Short Introduction to Perturbation Theory for Linear Operators, Springer, New York-Berlin, 1982

[14] Lamb G.L., Jr., Elements of Soliton Theory, Pure Appl. Math. (N. Y.), John Wiley & Sons, New York, 1980 | Zbl 0445.35001

[15] Lax P.D., Linear Algebra, Pure Appl. Math. (N. Y.), John Wiley & Sons, New York, 1997

[16] Lax P.D., Functional Analysis, Pure Appl. Math. (N. Y.), John Wiley & Sons, New York, 2002 | Zbl 1009.47001

[17] Lévy P., Le Mouvement Brownien, Mémoir. Sci. Math., 126, Gauthier-Villars, Paris, 1954

[18] McKean H.P., Jr., Stochastic Integrals, Probab. Math. Statist., Academic Press, New York-London, 1969

[19] Mehta M.L., Random Matrices, 2nd ed., Academic Press, Boston, 1991

[20] Munroe M.E., Introduction to Measure and Integration, Addison-Wesley, Cambridge, 1953 | Zbl 0050.05603

[21] Pöppe Ch., The Fredholm determinant method for the KdV equations, Phys. D, 1984, 13(1–2), 137–160 http://dx.doi.org/10.1016/0167-2789(84)90274-4

[22] Tracy C.A., Widom H., Introduction to random matrices, In: Geometric and Quantum Aspects of Integrable Systems, Scheveningen, 1992, Lecture Notes in Phys., 424, Springer, Berlin, 1993, 103–130 http://dx.doi.org/10.1007/BFb0021444

[23] Uhlenbeck G.E., Ornstein L.S., On the theory of the Brownian motion, Phys. Rev., 1930, 36, 823–841 http://dx.doi.org/10.1103/PhysRev.36.823 | Zbl 56.1277.03

[24] Weyl H., The Classical Groups, Princeton University Press, Princeton, 1939

[25] Whittaker E.T., Watson G.N., A Course of Modern Analysis, 4th ed., Cambridge University Press, New York, 1962

[26] Wiener N., Differential space, Journal of Mathematics and Physics Mass. Inst. Tech., 1923, 2, 131–174

[27] Wigner E., On the distribution of the roots of certain symmetric matrices, Ann. of Math., 1958, 67, 325–326 http://dx.doi.org/10.2307/1970008 | Zbl 0085.13203