Complete classification of surfaces with a canonical principal direction in the Euclidean space 𝔼 3
Marian Munteanu ; Ana Nistor
Open Mathematics, Tome 9 (2011), p. 378-389 / Harvested from The Polish Digital Mathematics Library

In the present paper we classify all surfaces in 𝔼 3 with a canonical principal direction. Examples of this type of surfaces are constructed. We prove that the only minimal surface with a canonical principal direction in the Euclidean space 𝔼 3 is the catenoid.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269808
@article{bwmeta1.element.doi-10_2478_s11533-011-0001-7,
     author = {Marian Munteanu and Ana Nistor},
     title = {Complete classification of surfaces with a canonical principal direction in the Euclidean space \[ \mathbb {E} \]
3},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {378-389},
     zbl = {1222.53009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0001-7}
}
Marian Munteanu; Ana Nistor. Complete classification of surfaces with a canonical principal direction in the Euclidean space \[ \mathbb {E} \]
3. Open Mathematics, Tome 9 (2011) pp. 378-389. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0001-7/

[1] Blair D.E., On a generalization of the catenoid, Canad. J. Math., 1975, 27, 231–236 http://dx.doi.org/10.4153/CJM-1975-028-8 | Zbl 0307.53003

[2] do Carmo M.P., Dajczer M., Rotation hypersurfaces in spaces of constant curvature, Trans. Amer. Math. Soc, 1983, 277(2), 685–709 http://dx.doi.org/10.2307/1999231 | Zbl 0518.53059

[3] Cermelli P., Di Scala A.J., Constant-angle surfaces in liquid crystals, Philosophical Magazine, 2007, 87(12), 1871–1888 http://dx.doi.org/10.1080/14786430601110364

[4] Dillen F., Fastenakels J., Van der Veken J., Surfaces in 𝕊 2×ℝ with a canonical principal direction, Ann. Global Anal. Geom., 2009, 35(4), 381–396 http://dx.doi.org/10.1007/s10455-008-9140-x | Zbl 1176.53031

[5] Dillen F., Munteanu M.I., Nistor A.I., Canonical coordinates and principal directions for surfaces in 2×ℝ, Taiwanese J. Math., 2011 (in press), preprint available at http://arxiv.org/abs/0910.2135 | Zbl 1241.53010

[6] Morita S., Geometry of Differential Forms, Transl. Math. Monogr., 201, American Mathematical Society, Providence, 2001 | Zbl 0987.58002

[7] Munteanu M.I., Nistor A.-I., A new approach on constant angle surfaces in 3, Turkish J. Math., 2009, 33(2), 169–178

[8] O’Neill B., Elementary Differential Geometry, 2nd ed. revised, Academic Press, Amsterdam, 2006

[9] Tojeiro R., On a class of hypersurfaces in 𝕊 n×ℝ and ℍn×ℝ, Illinois J. Math., 2011 (in press), preprint available at http://arxiv.org.abs/0909.2265