We prove a limit theorem in the space of analytic functions for the Hurwitz zeta-function with algebraic irrational parameter.
@article{bwmeta1.element.doi-10_2478_s11533-010-0099-z, author = {Antanas Laurin\v cikas and J\"orn Steuding}, title = {Limit theorems in the space of analytic functions for the Hurwitz zeta-function with an algebraic irrational parameter}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {319-327}, zbl = {1273.11136}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0099-z} }
Antanas Laurinčikas; Jörn Steuding. Limit theorems in the space of analytic functions for the Hurwitz zeta-function with an algebraic irrational parameter. Open Mathematics, Tome 9 (2011) pp. 319-327. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0099-z/
[1] Billingsley P., Convergence of Probability Measures, John Wiley & Sons, New York-London-Sydney, 1968 | Zbl 0172.21201
[2] Cassels J.W.S., Footnote to a note of Devenport and Heilbronn, J. London Math. Soc., 1961, 36, 177–184 http://dx.doi.org/10.1112/jlms/s1-36.1.177 | Zbl 0097.03403
[3] Conway J.B., Functions of One Complex Variable, Grad. Texas in Math., 11, Springer, New York-Heidelberg, 1973 | Zbl 0277.30001
[4] Cramér H., Leadbetter M.R., Stationary and Related Stochastic Processes, John Wiley & Sons, New York-London-Sydney, 1967 | Zbl 0162.21102
[5] Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Math. Appl., 352, Kluwer, Dordrecht, 1996 | Zbl 0859.11053
[6] Laurinčikas A, A limit theorem for the Hurwitz zeta-function with algebraic irrational parameter, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 2005, 322, Trudy po Teorii Chisel, 125–134 (in Russian) | Zbl 1074.11050
[7] Laurinčikas A, Steuding J., A limit theorem for the Hurwitz zeta-function with an algebraic irrational parameter, Arch. Math. (Basel), 2005, 85(5), 419–432 | Zbl 1132.11346
[8] Laurinčikas A., Steuding J., Complement to the paper: A limit theorem for the Hurwitz zeta-function with an algebraic irrational parameter (Arch. Math. 85 (2005), 419–432), submitted http://dx.doi.org/10.1007/s00013-005-1190-8 | Zbl 1132.11346