This paper is concerned with an optimal control problem governed by the nonlinear one dimensional periodic wave equation with x-dependent coefficients. The control of the system is realized via the outer function of the state. Such a model arises from the propagation of seismic waves in a nonisotropic medium. By investigating some important properties of the linear operator associated with the state equation, we obtain the existence and regularity of the weak solution to the state equation. Furthermore, the existence of the optimal control is proved by means of the Arzelà-Ascoli lemma and Sobolev compact imbedding theorem.
@article{bwmeta1.element.doi-10_2478_s11533-010-0098-0, author = {Hengyan Li and Shuguan Ji}, title = {Optimal control of nonlinear one-dimensional periodic wave equation with x-dependent coefficients}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {269-280}, zbl = {1215.49007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0098-0} }
Hengyan Li; Shuguan Ji. Optimal control of nonlinear one-dimensional periodic wave equation with x-dependent coefficients. Open Mathematics, Tome 9 (2011) pp. 269-280. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0098-0/
[1] Adams R.A., Sobolev Spaces, Pure Appl. Math., 65, Academic Press, New York, 1975
[2] Akkouchi M., Bounabat A., Goebel M., Smooth and nonsmooth Lipschitz controls for a class of nonlinear ordinary differential equations of second order, preprint available at http://www.mathematik.uni-halle.de/reports/sources/1998/98-33report.dvi
[3] Barbu V, Optimal control of the one-dimensional periodic wave equation, Appl. Math. Optim., 1997, 35(1), 77–90 | Zbl 0866.49028
[4] Barbu V, Pavel N.H., Periodic solutions to one-dimensional wave equation with piece-wise constant coefficients, J. Differential Equations, 1996, 132(2), 319–337 http://dx.doi.org/10.1006/jdeq.1996.0182 | Zbl 0896.35075
[5] Barbu V, Pavel N.H., Determining the acoustic impedance in the 1-D wave equation via an optimal control problem, SIAM J. Control Optim., 1997, 35(5), 1544–1556 http://dx.doi.org/10.1137/S0363012995283698 | Zbl 0906.49009
[6] Barbu V., Pavel N.H., Periodic solutions to nonlinear one dimensional wave equation with x-dependent coefficients, Trans. Amer. Math. Soc, 1997, 349(5), 2035–2048 http://dx.doi.org/10.1090/S0002-9947-97-01714-5 | Zbl 0880.35073
[7] Brézis H., Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc. (N.S.), 1983, 8(3), 409–426 http://dx.doi.org/10.1090/S0273-0979-1983-15105-4 | Zbl 0515.35060
[8] Brown R.C., Hinton D.B., Schwabik Š., Applications of a one-dimensional Sobolev inequality to eigenvalue problems, Differential Integral Equations, 1996, 9(3), 481–498 | Zbl 0842.34083
[9] Goebel M., On smooth and nonsmooth Lipschitz controls, FB Mathematik und Informatik Report, 39, Martin-Luther-Universität Halle-Wittenberg, 1997, available at http://www.mathematik.uni-halle.de/reports/sources/1997/97-39report.dvi
[10] Ji S., Smooth and nonsmooth Lipschitz controls for a class of vector differential equations, J. Optim. Theory Appl., 2006, 131(2), 245–264 http://dx.doi.org/10.1007/s10957-006-9138-0 | Zbl 1139.49301
[11] Ji S., Time periodic solutions to a nonlinear wave equation with x-dependent coefficients, Calc. Var. Partial Differential Equations, 2008, 32(2), 137–153 http://dx.doi.org/10.1007/s00526-007-0132-7 | Zbl 1160.35053
[12] Ji S., Periodic solutions on the Sturm-Liouville boundary value problem for two-dimensional wave equation, J. Math. Phys., 2009, 50(11), #113510 | Zbl 1304.35427
[13] Ji S., Time-periodic solutions to a nonlinear wave equation with periodic or anti-periodic boundary conditions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2009, 465(2103), 895–913 http://dx.doi.org/10.1098/rspa.2008.0272 | Zbl 1186.35112
[14] Ji S., Li Y., Periodic solutions to one-dimensional wave equation with x-dependent coefficients, J. Differential Equations, 2006, 229(2), 466–493 http://dx.doi.org/10.1016/j.jde.2006.03.020 | Zbl 1103.35011
[15] Ji S., Li Y., Time-periodic solutions to the one-dimensional wave equation with periodic or anti-periodic boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 2007, 137(2), 349–371 http://dx.doi.org/10.1017/S0308210505001174 | Zbl 1221.35240
[16] Ji S., Li Y., Time periodic solutions to one-dimensional nonlinear wave equation, Arch. Ration. Mech. Anal., DOI: 10.1007/s00205-010-0328-4
[17] Rabinowitz PH., Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math., 1978, 31(1), 31–68 http://dx.doi.org/10.1002/cpa.3160310103 | Zbl 0341.35051
[18] Talenti G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 1976, 110(1), 353–372 http://dx.doi.org/10.1007/BF02418013 | Zbl 0353.46018
[19] Wu Z., Li Y., Ordinary Differential Equations, Higher Education Press, Beijing, 2004
[20] Wu Z., Yin J., Wang C, Introduction to Partial Differential Equations of Elliptic and Parabolic Type, Science Beijing, 2004
[21] Yosida K., Functional Analysis, 6th ed, Grundlehren Math. Wiss., 123, Springer, Berlin-New York, 1980