In this paper, we consider the nonlinear Kirchhoff-type equation with initial conditions and homogeneous boundary conditions. Under suitable conditions on the initial datum, we prove that the solution blows up in finite time.
@article{bwmeta1.element.doi-10_2478_s11533-010-0096-2, author = {Qingyong Gao and Fushan Li and Yanguo Wang}, title = {Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipation}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {686-698}, zbl = {1233.35145}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0096-2} }
Qingyong Gao; Fushan Li; Yanguo Wang. Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipation. Open Mathematics, Tome 9 (2011) pp. 686-698. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0096-2/
[1] Adams R.A., Sobolev Spaces, Pure Appl. Math., 65, Academic Press, New York-London, 1975
[2] Chen W., Zhou Y., Global nonexistence for a semilinear Petrovsky equation, Nonlinear Anal., 2009, 70(9), 3203–3208 http://dx.doi.org/10.1016/j.na.2008.04.024 | Zbl 1157.35324
[3] Georgiev V., Todorova G., Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 1994, 109(2), 295–308 http://dx.doi.org/10.1006/jdeq.1994.1051 | Zbl 0803.35092
[4] Kirchhoff G., Vorlesungen über Mechanik, 3rd ed., Teubner, Leipzig, 1883
[5] Levine H.A., Park S.R., Serrin J., Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation, J. Math. Anal. Appl., 1998, 228(1), 181–205 http://dx.doi.org/10.1006/jmaa.1998.6126 | Zbl 0922.35094
[6] Li F.C., Global existence and blow-up of solutions for a higher-order Kirchhoff-type equation with nonlinear dissipation, Appl. Math. Lett., 2004, 17(12), 1409–1414 http://dx.doi.org/10.1016/j.am1.2003.07.014 | Zbl 1066.35062
[7] Messaoudi S.A., Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl., 2002, 265(2), 296–308 http://dx.doi.org/10.1006/jmaa.2001.7697
[8] Messaoudi S.A., Said Houari B., A blow-up result for a higher-order nonlinear Kirchhoff-type hyperbolic equation, Appl. Math. Lett., 2007, 20(8), 866–871 http://dx.doi.org/10.1016/j.aml.2006.08.018 | Zbl 1132.35420
[9] Ono K., On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl., 1997, 216(1), 321–342 http://dx.doi.org/10.1006/jmaa.1997.5697
[10] Vitillaro E., Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Ration. Mech. Anal., 1999, 149(2), 155–182 http://dx.doi.org/10.1007/s002050050171 | Zbl 0934.35101
[11] Wu S.T., Tsai L.Y., Blow-up of solutions for some non-linear wave equations of Kirchhoff type with some dissipation, Nonlinear Anal., 2006, 65(2), 243–264 http://dx.doi.org/10.1016/j.na.2004.11.023 | Zbl 1151.35052