Riemann conjectured that all the zeros of the Riemann ≡-function are real, which is now known as the Riemann Hypothesis (RH). In this article we introduce the study of the zeros of the truncated sums ≡N(z) in Riemann’s uniformly convergent infinite series expansion of ≡(z) involving incomplete gamma functions. We conjecture that when the zeros of ≡N(z) in the first quadrant of the complex plane are listed by increasing real part, their imaginary parts are monotone nondecreasing. We show how this conjecture implies the RH, and discuss some computational evidence for this and other related conjectures.
@article{bwmeta1.element.doi-10_2478_s11533-010-0095-3, author = {James Haglund}, title = {Some conjectures on the zeros of approximates to the Riemann [?]-function and incomplete gamma functions}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {302-318}, zbl = {1231.11103}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0095-3} }
James Haglund. Some conjectures on the zeros of approximates to the Riemann ≡-function and incomplete gamma functions. Open Mathematics, Tome 9 (2011) pp. 302-318. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0095-3/
[1] Apostol T.M., Modular Functions and Dirichlet Series in Number Theory, 2nd ed., Grad. Texts in Math., 41, Springer, New York, 1990
[2] Conrey J.B., More than two fifths of the zeros of the Riemann zeta function are on the critical line. J. Reine Angew. Math., 1989, 399, 1–26 | Zbl 0668.10044
[3] Chudnovsky M., Seymour P., The roots of the independence polynomial of a clawfree graph, J. Combin. Theory Ser. B, 2007, 97(3), 350–357 http://dx.doi.org/10.1016/j.jctb.2006.06.001 | Zbl 1119.05075
[4] Davenport H., Multiplicative Number Theory, 3rd ed., Grad. Texts in Math., 74, Springer, New York, 2000 | Zbl 1002.11001
[5] Edwards H.M., Riemann’s Zeta Function, reprint of the 1974 original, Dover Publications, Mineola, 2001
[6] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher Transcendental Functions. I, II, McGraw-Hill Book Company, New York-Toronto-London, 1953 | Zbl 0052.29502
[7] Gautschi W., The incomplete gamma functions since Tricomi, In: Tricomi’s Ideas and Contemporary Applied Mathematics, Rome/Turin, 1997, Atti Convegni Lincei, 147, Accad. Naz. Lincei, Rome, 1998, 203–237
[8] Gronwall T.H., Sur les zéros des fonctions P(z) et Q(z) associées à la fonction gamma, Ann. Sci. École Norm. Sup., 1916, 33, 381–393 | Zbl 46.0563.05
[9] Hejhal D.A., On a result of G. Pólya concerning the Riemann ≡-function. J. Analyse Math., 1990, 55(1), 59–95 http://dx.doi.org/10.1007/BF02789198 | Zbl 0723.11039
[10] Ki H., On the zeros of approximations of the Ramanujan ≡-function, Ramanujan J., 2008, 17(1), 123–143 http://dx.doi.org/10.1007/s11139-007-9046-4 | Zbl 1238.11080
[11] Mahler K., Über die Nullstellen der unvollständigen Gammafunktionen, Rend. Circ. Mat. Palermo, 1930, 54, 1–31 http://dx.doi.org/10.1007/BF03021175 | Zbl 56.0310.01
[12] Nielsen N., Die Gammafunktion, Chelsea Publishing Co., New York, 1965
[13] Pólya G., Bemerkung über die Integraldarstellung der Riemannschen ζ-Funktion, Acta Math., 1926, 48(3–4), 305–317 http://dx.doi.org/10.1007/BF02565336
[14] Selberg A., On the zeros of Riemann’s zeta-function, Skr. Norske Vid. Akad. Oslo I., 1942, 10
[15] The Riemann Hypothesis, CMS Books Math., Springer, New York, 2008