We study Karhunen-Loève expansions of the process(X t(α))t∈[0,T) given by the stochastic differential equation , with the initial condition X 0(α) = 0, where α > 0, T ∈ (0, ∞), and (B t)t≥0 is a standard Wiener process. This process is called an α-Wiener bridge or a scaled Brownian bridge, and in the special case of α = 1 the usual Wiener bridge. We present weighted and unweighted Karhunen-Loève expansions of X (α). As applications, we calculate the Laplace transform and the distribution function of the L 2[0, T]-norm square of X (α) studying also its asymptotic behavior (large and small deviation).
@article{bwmeta1.element.doi-10_2478_s11533-010-0090-8, author = {M\'aty\'as Barczy and Endre Igl\'oi}, title = {Karhunen-Lo\`eve expansions of $\alpha$-Wiener bridges}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {65-84}, zbl = {1228.60047}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0090-8} }
Mátyás Barczy; Endre Iglói. Karhunen-Loève expansions of α-Wiener bridges. Open Mathematics, Tome 9 (2011) pp. 65-84. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0090-8/
[1] Abramowitz M., Stegun I.A. (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington D.C., 1964, 10th printing with corrections, 1972
[2] Adler R.J., An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, IMS Lecture Notes Monogr. Ser., 12, Institute of Mathematical Statistics, Hayward, 1990 | Zbl 0747.60039
[3] Ash R.B., Gardner M.F., Topics in Stochastic Processes, Probability and Mathematical Statistics, 27, Academic Press, New York-London, 1975
[4] Barczy M., Iglói E., Karhunen-Loève expansions of α-Wiener bridges, preprint available at http://arxivőrg/abs/1007.2904 | Zbl 1228.60047
[5] Barczy M., Pap G., α-Wiener bridges: singularity of induced measures and sample path properties, Stoch. Anal. Appl., 2010, 28(3), 447–466 http://dx.doi.org/10.1080/07362991003704985 | Zbl 1195.60060
[6] Barczy M., Pap G., Explicit formulas for Laplace transforms of certain functionals of some time inhomogeneous diffusions, preprint available at http://arxivőrg/abs/0810.2930 | Zbl 1215.60015
[7] Borodin A.N., Salminen P., Handbook of Brownian Motion - Facts and Formulae, 2nd ed., Probab. Appl., Birkhäuser, Basel-Boston-Berlin, 2002 | Zbl 1012.60003
[8] Bowman F., Introduction to Bessel Functions, Dover, New York, 1958 | Zbl 0083.05602
[9] Brennan M.J., Schwartz E.S., Arbitrage in stock index futures, Journal of Business, 1990, 63(1), S7–S31 http://dx.doi.org/10.1086/296491
[10] Corlay S., Pagès G., Functional quantization based stratified sampling methods, preprint available at http://arxivőrg/abs/1008.4441v1 | Zbl 1310.65005
[11] Csörgő M., Révész P., Strong Approximations in Probability and Statistics, Probab. Math. Statist., Academic Press, New York, 1981 | Zbl 0539.60029
[12] Deheuvels P., Karhunen-Loève expansions of mean-centered Wiener processes, In: High Dimensional Probability, IMS Lecture Notes Monogr. Ser., 51, Institute of Mathematical Statistics, Beachwood, 2006, 62–76 http://dx.doi.org/10.1214/074921706000000761 | Zbl 1130.60045
[13] Deheuvels P., A Karhunen-Loève expansion of a mean-centered Brownian bridge, Statist. Probab. Lett., 2007, 77(12), 1190–1200 http://dx.doi.org/10.1016/j.spl.2007.03.011 | Zbl 1274.62318
[14] Deheuvels P., Martynov G., Karhunen-Loève expansions for weighted Wiener processes and Brownian bridges via Bessel functions, In: High Dimensional Probability, III, Sandjberg, 2002, Progr. Probab., 55, Birkhäuser, Basel, 57–93 | Zbl 1048.60021
[15] Deheuvels P., Peccati G., Yor M., On quadratic functionals of the Brownian sheet and related processes, Stochastic Process. Appl., 2006, 116(3), 493–538 http://dx.doi.org/10.1016/j.spa.2005.10.004 | Zbl 1090.60020
[16] Gutiérrez Jaimez R., Valderrama Bonnet M.J., On the Karhunen-Loève expansion for transformed processes, Trabajos Estadíst., 1987, 2(2), 81–90 http://dx.doi.org/10.1007/BF02863594 | Zbl 0734.60042
[17] Hwang C.-R., Gaussian measure of large balls in a Hilbert space, Proc. Amer. Math. Soc., 1980, 78(1), 107–110 | Zbl 0393.60009
[18] Jacod J., Shiryaev A.N., Limit Theorems for Stochastic Processes, 2nd ed., Grundlehren Math. Wiss., 288, Springer, Berlin, 2003 | Zbl 1018.60002
[19] Korenev B.G., Bessel Functions and their Applications, Anal. Methods Spec. Funct., 8, Taylor & Francis, London, 2002 | Zbl 1065.33001
[20] Lévy P., Wiener's random function, and other Laplacian random functions, In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley-Los Angeles, 1951, 171–187
[21] Li W.V., Comparison results for the lower tail of Gaussian seminorms, J. Theoret. Probab., 1992, 5(1), 1–31 http://dx.doi.org/10.1007/BF01046776 | Zbl 0743.60009
[22] Liu N., Ulukus S., Optimal distortion-power tradeoffs in sensor networks: Gauss-Markov random processes, preprint available at http://arxiv.org/PS_cache/cs/pdf/0604/0604040v1.pdf
[23] Liptser R.S., Shiryaev A.N., Statistics of Random Processes I. General Theory, 2nd ed., Appl. Math. (N.Y.), 5, Springer, Berlin-Heidelberg, 2001 | Zbl 1008.62072
[24] Luschgy H., Pagès G., Expansions for Gaussian processes and Parseval frames, Electron. J. Probab., 2009, 14(42), 1198–1221 | Zbl 1195.60056
[25] Mansuy R., On a one-parameter generalization of the Brownian bridge and associated quadratic functionals, J. Theoret. Probab., 2004, 17(4), 1021–1029 http://dx.doi.org/10.1007/s10959-004-0588-8 | Zbl 1063.60049
[26] Martynov G.V., Computation of distribution functions of quadratic forms of normally distributed random variables, Theory Probab. Appl., 1976, 20(4), 782–793 http://dx.doi.org/10.1137/1120085 | Zbl 0364.60043
[27] Martynov G.V., A generalization of Smirnov's formula for the distribution functions of quadratic forms, Theory Probab. Appl., 1978, 22(3), 602–607 http://dx.doi.org/10.1137/1122074 | Zbl 0392.62011
[28] Nazarov A.I., On the sharp constant in the small ball asymptotics of some Gaussian processes under L 2-norm, J. Math. Sci. (N.Y.), 2003, 117(3), 4185–4210 http://dx.doi.org/10.1023/A:1024868604219
[29] Nazarov A.I., Nikitin Ya.Yu., Exact L 2-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems, Probab. Theory Related Fields, 2004, 129(4), 469–494 http://dx.doi.org/10.1007/s00440-004-0337-z | Zbl 1051.60041
[30] Nazarov A.I., Pusev R.S., Exact small ball asymptotics in weighted L 2-norm for some Gaussian processes, J. Math. Sci. (N.Y.), 2009, 163(4), 409–429 http://dx.doi.org/10.1007/s10958-009-9683-9 | Zbl 1288.60045
[31] Øksendal B., Stochastic Differential Equations, 6th ed., Universitext, Springer, Berlin-Heidelberg-New York, 2003 http://dx.doi.org/10.1007/978-3-642-14394-6
[32] Papoulis A., Probability, Random Variables and Stochastic Processes, 3rd ed., McGraw-Hill, New York, 1991
[33] Smirnov N.V., On the distribution of Mises’ ω 2-test, Mat. Sb., 1937, 2(44)(5), 973–993 (in Russian)
[34] Sondermann D., Trede M., Wilfling B., Estimating the degree of interventionist policies in the run-up to EMU, Applied Economics (in press), DOI: 10.1080/00036840802481884
[35] Trede M., Wilfling B., Estimating exchange rate dynamics with diffusion processes: an application to Greek EMU data, Empirical Economics, 2007, 33(1), 23–39 http://dx.doi.org/10.1007/s00181-006-0081-6
[36] Watson G.N., A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, Cambridge, 1944 | Zbl 0063.08184
[37] Yor M., Some Aspects of Brownian Motion, Part II: Some Recent Martingale Problems, Lectures Math. ETH Zurich, Birkhäuser, Basel, 1997
[38] Zolotarev V.M., Concerning a certain probability problem, Theory Probab. Appl., 1961, 6(2), 201–204 http://dx.doi.org/10.1137/1106025