The group Sp10(ℤ) is (2,3)-generated
Vadim Vasilyev ; Maxim Vsemirnov
Open Mathematics, Tome 9 (2011), p. 36-49 / Harvested from The Polish Digital Mathematics Library

It is proved that the group Sp10(ℤ) is generated by an involution and an element of order 3.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269596
@article{bwmeta1.element.doi-10_2478_s11533-010-0089-1,
     author = {Vadim Vasilyev and Maxim Vsemirnov},
     title = {The group Sp10($\mathbb{Z}$) is (2,3)-generated},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {36-49},
     zbl = {1222.20022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0089-1}
}
Vadim Vasilyev; Maxim Vsemirnov. The group Sp10(ℤ) is (2,3)-generated. Open Mathematics, Tome 9 (2011) pp. 36-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0089-1/

[1] Di Martino L., Vavilov N., (2; 3)-generation of SL(n, q). I. Cases n = 5, 6, 7, Comm. Algebra, 1994, 22(4), 1321–1347 http://dx.doi.org/10.1080/00927879408824908 | Zbl 0805.20038

[2] Di Martino L., Vavilov N., (2; 3)-generation of SL(n, q). II. Cases n ≥ 8, Comm. Algebra, 1996, 24(2), 487–515 http://dx.doi.org/10.1080/00927879608825582 | Zbl 0847.20043

[3] Hahn A.J., O'Meara O.T., The Classical Groups and K-theory, Grundlehren Math. Wiss., 291, Springer, Berlin, 1989

[4] Liebeck M.W., Shalev A., Classical groups, probabilistic methods, and the (2, 3)-generation problem, Ann. of Math., 1996, 144(1), 77–125 http://dx.doi.org/10.2307/2118584 | Zbl 0865.20020

[5] Lucchini A., Tamburini M.C., Classical groups of large rank as Hurwitz groups, J. Algebra, 1999, 219(2), 531–546 http://dx.doi.org/10.1006/jabr.1999.7911 | Zbl 1063.20504

[6] Sanchini P., Tamburini M.C., Constructive (2; 3)-generation: a permutational approach, Rend. Sem. Mat. Fis. Milano, 1994, 64(1), 141–158 http://dx.doi.org/10.1007/BF02925196 | Zbl 0860.20039

[7] Tamburini M.C., The (2; 3)-generation of matrix groups over the integers, In: Ischia Group Theory 2008, Proceedings of the Conference in Group Theory, Naples, April 1–4, 2008, World Scientific, Hackensack, 2009, 258–264 http://dx.doi.org/10.1142/9789814277808_0020

[8] Tamburini M.C., Generation of certain simple groups by elements of small order, Istit. Lombardo Accad. Sci. Lett. Rend. A, 1987, 121, 21–27

[9] Tamburini M.C., Wilson J.S., Gavioli N., On the (2, 3)-generation on some classical groups. I, J. Algebra, 1994, 168(1), 353–370 http://dx.doi.org/10.1006/jabr.1994.1234

[10] Vasilyev V.L., Vsemirnov M.A., On (2, 3)-generation of low-dimensional symplectic groups over the integers, Comm. Algebra, 2010, 38(9), 3469–3483 http://dx.doi.org/10.1080/00927870902933205 | Zbl 1208.20036

[11] Vsemirnov M.A., Is the group SL(6,ℤ) (2, 3)-generated?, J. Math. Sci. (N.Y.), 2007, 140(5), 660–675 http://dx.doi.org/10.1007/s10958-007-0006-8

[12] Vsemirnov M.A., The group GL(6,ℤ) is (2, 3)-generated, J. Group Theory, 2007, 10(4), 425–430 http://dx.doi.org/10.1515/JGT.2007.033

[13] Vsemirnov M.A., On (2, 3)-generation of matrix groups over the ring of integers, St. Petersburg Math. J., 2008, 19(6), 883–910 http://dx.doi.org/10.1090/S1061-0022-08-01026-1 | Zbl 1206.20040

[14] Vsemirnov M.A., On (2, 3)-generation of matrix groups over the ring of integers. II, St. Petersburg Math. J. (in press)