Unbounded solutions of third order delayed differential equations with damping term
Miroslav Bartušek ; Mariella Cecchi ; Zuzana Došlá ; Mauro Marini
Open Mathematics, Tome 9 (2011), p. 184-195 / Harvested from The Polish Digital Mathematics Library

Globally positive solutions for the third order differential equation with the damping term and delay, x'''+q(t)x'(t)-r(t)f(x(φ(t)))=0, are studied in the case where the corresponding second order differential equation y''+q(t)y=0 is oscillatory. Necessary and sufficient conditions for all nonoscillatory solutions of (*) to be unbounded are given. Furthermore, oscillation criteria ensuring that any solution is either oscillatory or unbounded together with its first and second derivatives are presented. The comparison of results with those in the case when (**) is nonoscillatory is given, as well.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269643
@article{bwmeta1.element.doi-10_2478_s11533-010-0088-2,
     author = {Miroslav Bartu\v sek and Mariella Cecchi and Zuzana Do\v sl\'a and Mauro Marini},
     title = {Unbounded solutions of third order delayed differential equations with damping term},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {184-195},
     zbl = {1219.34085},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0088-2}
}
Miroslav Bartušek; Mariella Cecchi; Zuzana Došlá; Mauro Marini. Unbounded solutions of third order delayed differential equations with damping term. Open Mathematics, Tome 9 (2011) pp. 184-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0088-2/

[1] Bartušek M., On noncontinuable solutions of differential equations with delay, Electron. J. Qual. Theory Differ. Equ., 2009, Spec. Ed. I, No. 6 | Zbl 1195.34093

[2] Bartušek M., Cecchi M., Došlá Z., Marini M., On nonoscillatory solutions of third order nonlinear differential equations, Dynam. Systems Appl., 2000, 9(4), 483–499 | Zbl 1016.34036

[3] Bartušek M., Cecchi M., Došlá Z., Marini M., Oscillation for third order nonlinear differential equations with deviating argument, Abstr. Appl. Anal., 2010, Art. ID 278962 | Zbl 1192.34073

[4] Bartušek M., Cecchi M., Došlá Z., Marini M., Positive solutions of third order damped nonlinear differential equations, Math. Bohem. (in press) | Zbl 1224.34152

[5] Borůvka O., Linear Differential Transformations of the Second Order, The English Universities Press, London, 1971 | Zbl 0222.34002

[6] Cecchi M., Došlá Z., Marini M., Asymptotic behavior of solutions of third order delay differential equations, Arch. Math. (Brno), 1997, 33(1–2), 99–108 | Zbl 0916.34059

[7] Cecchi M., Došlá Z., Marini M., On nonlinear oscillations for equations associated to disconjugate operators, Nonlinear Anal., 1997, 30(3), 1583–1594 http://dx.doi.org/10.1016/S0362-546X(97)00028-X | Zbl 0892.34032

[8] Cecchi M., Došlá Z., Marini M., On third order differential equations with property A and B, J. Math. Anal. Appl., 1999, 231(2), 509–525 http://dx.doi.org/10.1006/jmaa.1998.6247

[9] Džurina J., Asymptotic properties of the third order delay differential equations, Nonlinear Anal., 1996, 26(1), 33–39 http://dx.doi.org/10.1016/0362-546X(94)00239-E

[10] Elias U., Oscillation Theory of Two-Term Differential Equations, Math. Appl., 396, Kluwer, Dordrecht, 1997 | Zbl 0878.34022

[11] Erbe L., Oscillation, nonoscillation, and asymptotic behavior for third order nonlinear differential equations, Ann. Mat. Pura Appl., 1976, 110(1), 373–391 http://dx.doi.org/10.1007/BF02418014 | Zbl 0345.34023

[12] Erbe L., Peterson A., Saker S.H., Oscillation and asymptotic behavior of a third order nonlinear dynamic equation, Canad. Appl. Math. Q., 2006, 14(2), 124–147 | Zbl 1145.34329

[13] Greguš M., Greguš M., Jr., Asymptotic properties of solutions of a certain nonautonomous nonlinear differential equation of the third order, Boll. Un. Mat. Ital. A, 1993, 7(3), 341–350 | Zbl 0802.34032

[14] Heidel J.W., Qualitative behavior of solutions of a third order nonlinear differential equations, Pacific J. Math., 1968, 27(3), 507–526

[15] Kiguradze I.T., An oscillation criterion for a class of ordinary differential equations, Differential Equations, 1992, 28(2), 180–190 | Zbl 0788.34027

[16] Kiguradze I., Chanturia T.A., Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Math. Appl. (Soviet Ser.), 89, Kluwer, Dordrecht, 1993

[17] Marini M., Criteri di limitatezza per le soluzioni dell'equazione lineare del secondo ordine, Boll. Un. Mat. Ital., 1975, 11(1), 154–165 | Zbl 0332.34027

[18] Mojsej I., Ohriska J., Comparison theorems for noncanonical third order nonlinear differential equations, Cent. Eur. J. Math., 2007, 5(1), 154–163 http://dx.doi.org/10.2478/s11533-006-0044-3 | Zbl 1128.34021

[19] Mojsej I., Tartal'ová A., On bounded nonoscillatory solutions of third-order nonlinear differential equations, Cent. Eur. J. Math., 2009, 7(4), 717–724 http://dx.doi.org/10.2478/s11533-009-0054-z | Zbl 1193.34068

[20] Parhi N., Padhi S., On asymptotic behavior of delay-differential equations of third order, Nonlinear Anal., 1998, 34(3), 391–403 http://dx.doi.org/10.1016/S0362-546X(97)00600-7 | Zbl 0935.34063

[21] Saker S.H., Oscillation criteria of Hille and Nehari types for third order delay differential equations, Commun. Appl. Anal., 2007, 11(3–4), 451–468 | Zbl 1139.34049

[22] Tiryaki A., Aktaş M.F., Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping, J. Math. Anal. Appl., 2007, 325(1), 54–68 http://dx.doi.org/10.1016/j.jmaa.2006.01.001 | Zbl 1110.34048