Let L be an n-dimensional non-abelian nilpotent Lie algebra and where M(L) is the Schur multiplier of L. In [Niroomand P., Russo F., A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra (in press)] it has been shown that s(L) ≥ 0 and the structure of all nilpotent Lie algebras has been determined when s(L) = 0. In the present paper, we will characterize all finite dimensional nilpotent Lie algebras with s(L) = 1; 2.
@article{bwmeta1.element.doi-10_2478_s11533-010-0079-3, author = {Peyman Niroomand}, title = {On dimension of the Schur multiplier of nilpotent Lie algebras}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {57-64}, zbl = {1281.17015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0079-3} }
Peyman Niroomand. On dimension of the Schur multiplier of nilpotent Lie algebras. Open Mathematics, Tome 9 (2011) pp. 57-64. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0079-3/
[1] Batten P., Multipliers and Covers of Lie Algebras, PhD thesis, North Carolina State University, 1993
[2] Batten P., Moneyhun K., Stitzinger E., On characterizing nilpotent Lie algebras by their multipliers, Comm. Algebra, 1996, 24(14), 4319–4330 http://dx.doi.org/10.1080/00927879608825817 | Zbl 0893.17008
[3] Batten P., Stitzinger E., On covers of Lie algebras, Comm. Algebra, 1996, 24(14), 4301–4317 http://dx.doi.org/10.1080/00927879608825816 | Zbl 0893.17004
[4] Berkovich Ya.G., On the order of the commutator subgroups and the Schur multiplier of a finite p-group, J. Algebra, 1991, 144(2), 269–272 http://dx.doi.org/10.1016/0021-8693(91)90106-I
[5] Bosko L.R., On Schur multipliers of Lie algebras and groups of maximal class, Internat. J. Algebra Comput., 2010, 20(6), 807–821 http://dx.doi.org/10.1142/S0218196710005881 | Zbl 1223.17015
[6] Ellis G., On the Schur multiplier of p-groups, Comm. Algebra, 1999, 27(9), 4173–4177 http://dx.doi.org/10.1080/00927879908826689 | Zbl 0947.20008
[7] Gaschütz W., Neubüser J., Yen T., Über den Multiplikator von p-Gruppen, Math. Z., 1967, 100(2), 93–96 http://dx.doi.org/10.1007/BF01110785 | Zbl 0203.02504
[8] Green J.A., On the number of automorphisms of a finite group, Proc. Roy. Soc. London Ser. A., 1956, 237, 574–581 http://dx.doi.org/10.1098/rspa.1956.0198
[9] Hardy P., On characterizing nilpotent Lie algebras by their multipliers III, Comm. Algebra, 2005, 33(11), 4205–4210 http://dx.doi.org/10.1080/00927870500261512 | Zbl 1099.17007
[10] Hardy P., Stitzinger E., On characterizing nilpotent Lie algebras by their multipliers t(L) = 3; 4; 5; 6, Comm. Algebra, 1998, 26(11), 3527–3539 http://dx.doi.org/10.1080/00927879808826357 | Zbl 0916.17008
[11] Jones M.R., Multiplicators of p-groups, Math. Z., 1972, 127(2), 165–166 http://dx.doi.org/10.1007/BF01112608 | Zbl 0226.20016
[12] Karpilovsky G., The Schur Multiplier, London Math. Soc. Monogr. (N.S.), 2, The Clarendon Press, Oxford University Press, New York, 1987 | Zbl 0619.20001
[13] Moneyhun K., Isoclinisms in Lie algebras, Algebras Groups Geom., 1994, 11(1), 9–22 | Zbl 0801.17005
[14] Niroomand P., On the order of Schur multiplier of non-abelian p-groups, J. Algebra, 2009, 322(12), 4479–4482 http://dx.doi.org/10.1016/j.jalgebra.2009.09.030 | Zbl 1186.20013
[15] Niroomand P., Russo F., A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra (in press) | Zbl 1250.17019
[16] Salemkar A.R., Alamian V., Mohammadzadeh H., Some properties of the Schur multiplier and covers of Lie algebras, Comm. Algebra, 2008, 36(2), 697–707 http://dx.doi.org/10.1080/00927870701724193 | Zbl 1132.17003
[17] Yankosky B., On the multiplier of a Lie algebra, J. Lie Theory, 2003, 13(1), 1–6 | Zbl 1010.17005
[18] Zhou X., On the order of Schur multipliers of finite p-groups, Comm. Algebra, 1994, 22(1), 1–8 http://dx.doi.org/10.1080/00927879408824827 | Zbl 0832.20038