The aim of this paper is to characterize the patterns of successive distances of leaves in plane trivalent trees, and give a very short characterization of their parity pattern. Besides, we count how many trees satisfy some given sequences of patterns.
@article{bwmeta1.element.doi-10_2478_s11533-010-0076-6, author = {Charles Delorme}, title = {Plane trivalent trees and their patterns}, journal = {Open Mathematics}, volume = {8}, year = {2010}, pages = {1041-1047}, zbl = {1223.05021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0076-6} }
Charles Delorme. Plane trivalent trees and their patterns. Open Mathematics, Tome 8 (2010) pp. 1041-1047. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0076-6/
[1] Comtet L., Advanced Combinatorics, D. Reidel, Dordrecht-Boston, 1974
[2] Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge University Press, Cambridge, 2009
[3] Jonsson J., Propp J., Problem 11298, Amer. Math. Monthly, 2007, 114(6), 547
[4] Sloane N.J.A., On-line Encyclopedia of Integer Sequences, http://www.research.att.com/∼njas/sequences/index.html | Zbl 1274.11001
[5] Stanley R.P., Enumerative Combinatorics, vol. 2, Cambridge Stud. Adv. Math., 62, Cambridge University Press, Cambridge, 1997