On the asymptotic behavior of a class of third order nonlinear neutral differential equations
Blanka Baculíková ; Jozef Džurina
Open Mathematics, Tome 8 (2010), p. 1091-1103 / Harvested from The Polish Digital Mathematics Library

The objective of this paper is to study asymptotic properties of the third-order neutral differential equation atxt+ptxσt''γ'+qtfxτt=0,tt0.E . We will establish two kinds of sufficient conditions which ensure that either all nonoscillatory solutions of (E) converge to zero or all solutions of (E) are oscillatory. Some examples are considered to illustrate the main results.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269611
@article{bwmeta1.element.doi-10_2478_s11533-010-0072-x,
     author = {Blanka Bacul\'\i kov\'a and Jozef D\v zurina},
     title = {On the asymptotic behavior of a class of third order nonlinear neutral differential equations},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {1091-1103},
     zbl = {1221.34173},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0072-x}
}
Blanka Baculíková; Jozef Džurina. On the asymptotic behavior of a class of third order nonlinear neutral differential equations. Open Mathematics, Tome 8 (2010) pp. 1091-1103. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0072-x/

[1] Akın-Bohner E., Došlá Z., Lawrence B., Oscillatory properties for three-dimensional dynamic systems, Nonlinear Anal., 2008, 69(2), 483–494 http://dx.doi.org/10.1016/j.na.2007.05.035 | Zbl 1161.34018

[2] Baculíková B., Džurina J., Oscillation of third-order neutral differential equations, Math. Comput. Modelling, 2010, 52(1–2), 215–226 http://dx.doi.org/10.1016/j.mcm.2010.02.011 | Zbl 1201.34097

[3] Baculíková B., Elabbasy E.M., Saker S.H., Džurina J., Oscillation criteria for third-order nonlinear differential equations, Math. Slovaca, 2008, 58(2), 201–220 http://dx.doi.org/10.2478/s12175-008-0068-1 | Zbl 1174.34052

[4] Baĭnov D.D., Mishev D.P., Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, Bristol, 1991 | Zbl 0747.34037

[5] Džurina J., Asymptotic properties of third order delay differential equations, Czechoslovak Math. J., 1995, 45(120)(3), 443–448 | Zbl 0842.34073

[6] Džurina J., Asymptotic properties of the third order delay differential equations, Nonlinear Anal., 1996, 26(1), 33–39 http://dx.doi.org/10.1016/0362-546X(94)00239-E

[7] Džurina J., Oscillation theorems for neutral differential equations of higher order, Czechoslovak Math. J., 2004, 54(129)(1), 107–117 http://dx.doi.org/10.1023/B:CMAJ.0000027252.29549.bb | Zbl 1057.34074

[8] Džurina J., Baculíková B., Oscillation of third-order functional differential equations, Electron. J. Qual. Theory Differ. Equ., 2010, No. 43 | Zbl 1211.34077

[9] Erbe L.H., Kong Q., Zhang B.G., Oscillation Theory for Functional-Differential Equations, Monogr. Textbooks Pure Appl. Math., 190, Marcel Dekker, New York, 1995

[10] Grace S.R., Agarwal R.P., Pavani R., Thandapani E., On the oscillation of certain third order nonlinear functional differential equations, Appl. Math. Comput., 2008, 202(1), 102–112 http://dx.doi.org/10.1016/j.amc.2008.01.025 | Zbl 1154.34368

[11] Greguš M., Third Order Linear Differential Equations, Math. Appl. (East European Ser.), Reidel, Dordrecht, 1987

[12] Györi I., Ladas G., Oscillation Theory of Delay Differential Equations, Oxford Math. Monogr., Clarendon Press, Oxford, 1991 | Zbl 0780.34048

[13] Hassan T.S., Oscillation of third order nonlinear delay dynamic equations on time scales, Math. Comput. Modelling, 2009, 49(7–8), 1573–1586 http://dx.doi.org/10.1016/j.mcm.2008.12.011

[14] Kiguradze I.T., Chanturia T.A., Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Math. Appl. (Soviet Ser.), 89, Kluwer Acad. Publ., Dordrecht, 1993

[15] Kusano T., Naito M., Comparison theorems for functional-differential equations with deviating arguments, J. Math. Soc. Japan, 1981, 33(3), 509–533 http://dx.doi.org/10.2969/jmsj/03330509 | Zbl 0494.34049

[16] Lacková D., The asymptotic properties of the solutions of the nth order functional neutral differential equations, Appl. Math. Comput., 2003, 146(2–3), 385–392 http://dx.doi.org/10.1016/S0096-3003(02)00590-8 | Zbl 1035.34087

[17] Ladde G.S., Lakshmikantham V., Zhang B.G., Oscillation Theory of Differential Equations with Deviating Arguments, Monogr. Textbooks Pure Appl. Math., 110, Marcel Dekker, New York, 1987

[18] Lazer A.C., The behavior of solutions of the differential equation y’" + p(x)y’ + q(x)y = 0, Pacific J. Math., 1966, 17(3), 435–466 | Zbl 0143.31501

[19] Parhi N., Das P., Asymptotic property of solutions of a class of third-order differential equations, Proc. Amer. Math. Soc., 1990, 110(2), 387–393 | Zbl 0721.34025

[20] Parhi N., Padhi S., On asymptotic behavior of delay-differential equations of third order, Nonlinear Anal., 1998, 34(3), 391–403 http://dx.doi.org/10.1016/S0362-546X(97)00600-7 | Zbl 0935.34063

[21] Parhi N., Padhi S., Asymptotic behaviour of solutions of third order delay-differential equations, Indian J. Pure Appl. Math., 2002, 33(10), 1609–1620 | Zbl 1025.34068

[22] Philos Ch.G., On the existence of nonoscillatory solutions tending to zero at 1 for differential equations with positive delays, Arch. Math. (Basel), 1981, 36(2), 168–178 | Zbl 0463.34050

[23] Saker S.H., Oscillation criteria of third-order nonlinear delay differential equations, Math. Slovaca, 2006, 56(4), 433–450 | Zbl 1141.34040

[24] Saker S.H., Džurina J., On the oscillation of certain class of third-order nonlinear delay differential equations, Math. Bohemica, 2010, 135(3), 225–237 | Zbl 1224.34217

[25] Tanaka K., Asymptotic analysis of odd order ordinary differential equations, Hiroshima Math. J., 1980, 10(2), 391–408 | Zbl 0453.34033

[26] Tiryaki A., Aktas M.F., Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping, J. Math. Anal. Appl., 2007, 325(1), 54–68 http://dx.doi.org/10.1016/j.jmaa.2006.01.001 | Zbl 1110.34048

[27] Zhong J., Ouyang Z., Zou S., Oscillation criteria for a class of third-order nonlinear neutral differential equations, J. Appl. Anal. (in press) | Zbl 1276.34026