On some problems involving Hardy’s function
Aleksandar Ivić
Open Mathematics, Tome 8 (2010), p. 1029-1040 / Harvested from The Polish Digital Mathematics Library

Some problems involving the classical Hardy function Zt=ζ12+itχ12+it-1122,ζs=χsζ1-s , are discussed. In particular we discuss the odd moments of Z(t) and the distribution of its positive and negative values.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269466
@article{bwmeta1.element.doi-10_2478_s11533-010-0071-y,
     author = {Aleksandar Ivi\'c},
     title = {On some problems involving Hardy's function},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {1029-1040},
     zbl = {1234.11111},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0071-y}
}
Aleksandar Ivić. On some problems involving Hardy’s function. Open Mathematics, Tome 8 (2010) pp. 1029-1040. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0071-y/

[1] Feng S., Zeros of the Riemann zeta function on the critical line, preprint available at http://arxiv.org/abs/1003.0059 | Zbl 1333.11086

[2] Hafner J.L., Ivić A., On some mean value results for the Riemann zeta-function, Théorie des nombres, Quebec, 1987, de Gruyter, Berlin-New York, 1989, 348–358

[3] Hafner J.L., Ivić A., On the mean square of the Riemann zeta-function on the critical line, J. Number Theory, 1989, 32(2), 151–191 http://dx.doi.org/10.1016/0022-314X(89)90024-3

[4] Heath-Brown D.R., The distribution and moments of the error term in the Dirichlet divisor problems, Acta Arith., 1992, 60(4), 389–415 | Zbl 0725.11045

[5] Heath-Brown D.R., Tsang K., Sign changes of E(T), Δ(x), and P(x), J. Number Theory, 1994, 49(1), 73–83 http://dx.doi.org/10.1006/jnth.1994.1081

[6] Hejhal D.A., On a result of Selberg concerning zeros of linear combinations of L-functions, Internat. Math. Res. Notices, 2000, 11, 551–577 http://dx.doi.org/10.1155/S1073792800000301 | Zbl 1159.11318

[7] Ivić A., The Riemann Zeta-Function, Wiley-Intersci. Publ., John Wiley & Sons, New York, 1985 | Zbl 0556.10026

[8] Ivić A., On sums of gaps between the zeros of ζ(s) on the critical line, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 1995, 6, 55–62 | Zbl 0838.11055

[9] Ivić A., On small values of the Riemann zeta-function on the critical line and gaps between zeros, Liet. Mat. Rink., 2002, 42(1), 31–45 | Zbl 1026.11071

[10] Ivić A., On the integral of Hardy’s function, Arch. Math. (Basel), 2004, 83(1), 41–47 | Zbl 1168.11319

[11] Ivić A., On the mean square of the divisor function in short intervals, J. Théor. Nombres Bordeaux, 2009, 21(2), 251–261 | Zbl 1222.11115

[12] Ivić A., On the Mellin transforms of powers of Hardy’s function, Hardy-Ramanujan J., 2010, 33, 32–58 | Zbl 1200.11062

[13] Jutila M., Atkinson’s formula for Hardy’s function, J. Number Theory, 2009, 129(11), 2853–2878 http://dx.doi.org/10.1016/j.jnt.2009.02.011 | Zbl 1232.11083

[14] Jutila M., An asymptotic formula for the primitive of Hardy’s function, Ark. Mat., DOI: 10.1007/s11512-010-0122-4 | Zbl 1241.11100

[15] Kalpokas J., Steuding J., On the value distribution of the Riemann zeta-function on the critical line, preprint available at http://arxiv.org/abs/0907.1910 | Zbl 1302.11060

[16] Keating J.P., Snaith N.C., Random matrix theory and L-functions at s = 1/2, Comm. Math. Phys., 2000, 214(1), 91–110 http://dx.doi.org/10.1007/s002200000262 | Zbl 1051.11047

[17] Korolëv M.A., On the integral of the Hardy function Z(t), Izv. Math., 2008, 72(3), 429–478 http://dx.doi.org/10.1070/IM2008v072n03ABEH002407 | Zbl 1239.11091

[18] Montgomery H.L., The pair correlation of zeros of the zeta-function, In: Analytic number theory, St. Louis, 1972, Proc. Sympos. Pure Math., 24, AMS, Providence, 1973, 181–193

[19] Odlyzko A.M., On the distribution of spacings between zeros of the zeta function, Math. Comp., 1987, 48(177), 273–308 | Zbl 0615.10049

[20] Odlyzko A.M., The 1020-th zero of the Riemann zeta-function and 175 million of its neighbors, preprint available at http://www.dtc.umn.edu/sodlyzko/unpublished/zeta.10to20.1992.pdf

[21] Ramachandra K., On the Mean-Value and Omega-Theorems for the Riemann Zeta-Function, Tata Inst. Fund. Res. Lectures on Math. and Phys., 85, Tata Institute of Fundamental Research, Bombay, 1995 | Zbl 0845.11003

[22] Selberg A., Collected Papers. Vol. 1, Springer, Berlin, 1989 | Zbl 0669.12001

[23] Titchmarsh E.C., The Theory of the Riemann Zeta-Function, 2nd ed., Oxford University Press, New York, 1986 | Zbl 0601.10026