Ends and quasicomponents
Nikita Shekutkovski ; Gorgi Markoski
Open Mathematics, Tome 8 (2010), p. 1009-1015 / Harvested from The Polish Digital Mathematics Library

Let X be a connected locally compact metric space. It is known that if X is locally connected, then the space of ends (Freudenthal ends), EX, can be represented as the inverse limit of the set (space) S(X C) of components of X C, i.e., as the inverse limit of the inverse system EX=lim(S(XC)),inclusions,CcompactinX) . In this paper, the above result is significantly improved. It is shown that for a space which is not locally connected, we can replace the space of components by the space of quasicomponents Q(X C) of X C. The following result is proved: if X is a connected locally compact metric space, then EX=lim(Q(XC)),inclusions,CcompactinX) .

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269720
@article{bwmeta1.element.doi-10_2478_s11533-010-0069-5,
     author = {Nikita Shekutkovski and Gorgi Markoski},
     title = {Ends and quasicomponents},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {1009-1015},
     zbl = {1213.54034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0069-5}
}
Nikita Shekutkovski; Gorgi Markoski. Ends and quasicomponents. Open Mathematics, Tome 8 (2010) pp. 1009-1015. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0069-5/

[1] Ball B.J., Proper shape retracts, Fund. Math., 89(2), 1975, 177–189 | Zbl 0321.55029

[2] Ball B.J., Quasicompactifications and shape theory, Pacific J. Math., 84(2), 1979, 251–259 | Zbl 0394.54020

[3] Dugundji J., Topology, Series in Advanced Mathematics, Allyn and Bacon, Boston, 1966

[4] Engelking R., General Topology, 2nd ed., Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989

[5] Hocking J.G., Young G.S., Topology, Addison-Wesley, Reading-London, 1961

[6] Kuratowski K., Topology, Vol. 2, Mir, Moscow, 1969 (in Russian)

[7] Michael E., Cuts, Acta Math., 111(1), 1964, 1–36 http://dx.doi.org/10.1007/BF02391006

[8] Shekutkovski N., Vasilevska V., Equivalence of different definitions of space of ends, God. Zb. Inst. Mat. Prir.-Mat. Fak. Univ. Kiril Metodij Skopje, 39, 2001, 7–13 | Zbl 1054.54024