A generalization of Mathieu subspaces to modules of associative algebras
Wenhua Zhao
Open Mathematics, Tome 8 (2010), p. 1132-1155 / Harvested from The Polish Digital Mathematics Library

We first propose a generalization of the notion of Mathieu subspaces of associative algebras 𝒜 , which was introduced recently in [Zhao W., Generalizations of the image conjecture and the Mathieu conjecture, J. Pure Appl. Algebra, 2010, 214(7), 1200–1216] and [Zhao W., Mathieu subspaces of associative algebras], to 𝒜 -modules . The newly introduced notion in a certain sense also generalizes the notion of submodules. Related with this new notion, we also introduce the sets σ(N) and τ(N) of stable elements and quasi-stable elements, respectively, for all R-subspaces N of 𝒜 -modules , where R is the base ring of 𝒜 . We then prove some general properties of the sets σ(N) and τ(N). Furthermore, examples from certain modules of the quasi-stable algebras [Zhao W., Mathieu subspaces of associative algebras], matrix algebras over fields and polynomial algebras are also studied.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269229
@article{bwmeta1.element.doi-10_2478_s11533-010-0068-6,
     author = {Wenhua Zhao},
     title = {A generalization of Mathieu subspaces to modules of associative algebras},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {1132-1155},
     zbl = {1256.16013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0068-6}
}
Wenhua Zhao. A generalization of Mathieu subspaces to modules of associative algebras. Open Mathematics, Tome 8 (2010) pp. 1132-1155. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0068-6/

[1] Adjamagbo P.K., van den Essen A., A proof of the equivalence of the Dixmier, Jacobian and Poisson Conjectures, Acta Math. Vietnam., 2007, 32(2–3), 205–214 | Zbl 1137.14046

[2] Bass H., Connell E.H., Wright D., The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc., 1982, 7(2), 287–330 http://dx.doi.org/10.1090/S0273-0979-1982-15032-7 | Zbl 0539.13012

[3] Belov-Kanel A., Kontsevich M., The Jacobian conjecture is stably equivalent to the Dixmier conjecture, Mosc. Math. J., 2007, 7(2), 209–218, 349 | Zbl 1128.16014

[4] Dixmier J., Sur les algèbres de Weyl, Bull. Soc. Math. France, 1968, 96, 209–242 | Zbl 0165.04901

[5] van den Essen A., Polynomial Automorphisms and the Jacobian Conjecture, Progr. Math., 190, Birkhäuser, Basel, 2000 | Zbl 0962.14037

[6] van den Essen A., The amazing image conjecture, preprint available at http://arxiv.org/abs/1006.5801 | Zbl 1239.14052

[7] van den Essen A., Willems R., Zhao W., Some results on the vanishing conjecture of differential operators with constant coefficients, preprint available at http://arxiv.org/abs/0903.1478 | Zbl 1317.33007

[8] van den Essen A., Wright D., Zhao W., Images of locally finite derivations of polynomial algebras in two variables, preprint available at http://arxiv.org/abs/1004.0521 | Zbl 1229.13022

[9] van den Essen A., Wright D., Zhao W., On the image conjecture, preprint available at http://arxiv.org/abs/1008.3962 | Zbl 1235.14057

[10] van den Essen A., Zhao W., Mathieu subspaces of univariate polynomial algebras (in preparation) | Zbl 1279.13011

[11] Francoise J.P., Pakovich F., Yomdin Y., Zhao W., Moment vanishing problem and positivity: some examples, Bull. Sci. Math. (in press), DOI:10.1016/j.bulsci.2010.06.002 | Zbl 1217.44008

[12] Keller O.-H., Ganze Cremona-Transformationen, Monatsh. Math. Phys., 1939, 47(1), 299–306 http://dx.doi.org/10.1007/BF01695502

[13] Mathieu O., Some conjectures about invariant theory and their Applications, In: Algèbre non commutative, groupes quantiques et invariants, Reims, 1995, Semin. Congr., 2, Soc. Math. France, Paris, 1997, 263–279 | Zbl 0889.22008

[14] Pakovich F., On rational functions orthogonal to all powers of a given rational function on a curve, preprint available at http://arxiv.org/abs/0910.2105 | Zbl 1297.30065

[15] Tsuchimoto Y., Endomorphisms of Weyl algebra and p-curvatures, Osaka J. Math., 2005, 42(2), 435–452 | Zbl 1105.16024

[16] Zhao W., Hessian nilpotent polynomials and the Jacobian conjecture, Trans. Amer. Math. Soc., 2007, 359(1), 249–274 http://dx.doi.org/10.1090/S0002-9947-06-03898-0 | Zbl 1109.14041

[17] Zhao W., A vanishing conjecture on differential operators with constant coefficients, Acta Math. Vietnam., 2007, 32(3), 259–286 | Zbl 1139.14303

[18] Zhao W., Images of commuting differential operators of order one with constant leading coefficients, J. Algebra, 2010, 324(2), 231–247 http://dx.doi.org/10.1016/j.jalgebra.2010.04.022 | Zbl 1197.14064

[19] Zhao W., Generalizations of the image conjecture and the Mathieu conjecture, J. Pure Appl. Algebra, 2010, 214(7), 1200–1216 http://dx.doi.org/10.1016/j.jpaa.2009.10.007 | Zbl 1205.33017

[20] Zhao W., New proofs for the Abhyankar-Gurjar inversion formula and the equivalence of the Jacobian conjecture and the vanishing conjecture, Proc. Amer. Math. Soc. (in press), preprint available at http://arxiv.org/abs/0907.3991 | Zbl 1229.14042

[21] Zhao W., Mathieu subspaces of associative algebras, preprint available at http://arxiv.org/abs/1005.4260 | Zbl 1255.16018

[22] Zhao W., Willems R., Analogue of the Duistermaat-van der Kallen theorem for group algebras (in preparation) | Zbl 1255.16022