Some boundedness results for systems of two rational difference equations
Gabriel Lugo ; Frank Palladino
Open Mathematics, Tome 8 (2010), p. 1058-1090 / Harvested from The Polish Digital Mathematics Library

We study k th order systems of two rational difference equations xn=α+i=1kβixn-1+i=1kγiyn-1A+j=1kBjxn-j+j=1kCjyn-j,yn=p+i=1kδixn-i+i=1kεiyn-iq+j=1kDjxn-j+j=1kEjyn-jn . In particular, we assume non-negative parameters and non-negative initial conditions, such that the denominators are nonzero. We develop several approaches which allow us to extend well known boundedness results on the k th order rational difference equation to the setting of systems in certain cases.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269538
@article{bwmeta1.element.doi-10_2478_s11533-010-0063-y,
     author = {Gabriel Lugo and Frank Palladino},
     title = {Some boundedness results for systems of two rational difference equations},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {1058-1090},
     zbl = {1218.39011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0063-y}
}
Gabriel Lugo; Frank Palladino. Some boundedness results for systems of two rational difference equations. Open Mathematics, Tome 8 (2010) pp. 1058-1090. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0063-y/

[1] Camouzis E., Kulenovic M.R.S., Ladas G., Merino O., Rational systems in the plane, J. Difference Equ. Appl., 2009, 15(3), 303–323 http://dx.doi.org/10.1080/10236190802125264 | Zbl 1169.39010

[2] Camouzis E., Ladas G., Global results on rational systems in the plane, part 1, J. Difference Equ. Appl., 2010, 16(8), 975–1013 http://dx.doi.org/10.1080/10236190802649727 | Zbl 1218.39001

[3] Camouzis E., Ladas G., Palladino F., Quinn E.P., On the boundedness character of rational equations, part 1, J. Difference Equ. Appl., 2006, 12(5), 503–523 http://dx.doi.org/10.1080/10236190500539311 | Zbl 1104.39003

[4] Knopf P.M., Huang Y.S., On the boundedness character of some rational difference equations, J. Difference Equ. Appl., 2008, 14(7), 769–777 http://dx.doi.org/10.1080/10236190701852695 | Zbl 1153.39016

[5] Lugo G., Palladino F.J., Unboundedness results for systems, Cent. Eur. J. Math., 2009, 7(4), 741–756 http://dx.doi.org/10.2478/s11533-009-0051-2 | Zbl 1185.39001

[6] Palladino F.J., Difference inequalities, comparison tests, and some consequences, Involve, 2008, 1(1), 91–100 | Zbl 1154.39012