We study k th order systems of two rational difference equations . In particular, we assume non-negative parameters and non-negative initial conditions, such that the denominators are nonzero. We develop several approaches which allow us to extend well known boundedness results on the k th order rational difference equation to the setting of systems in certain cases.
@article{bwmeta1.element.doi-10_2478_s11533-010-0063-y, author = {Gabriel Lugo and Frank Palladino}, title = {Some boundedness results for systems of two rational difference equations}, journal = {Open Mathematics}, volume = {8}, year = {2010}, pages = {1058-1090}, zbl = {1218.39011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0063-y} }
Gabriel Lugo; Frank Palladino. Some boundedness results for systems of two rational difference equations. Open Mathematics, Tome 8 (2010) pp. 1058-1090. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0063-y/
[1] Camouzis E., Kulenovic M.R.S., Ladas G., Merino O., Rational systems in the plane, J. Difference Equ. Appl., 2009, 15(3), 303–323 http://dx.doi.org/10.1080/10236190802125264 | Zbl 1169.39010
[2] Camouzis E., Ladas G., Global results on rational systems in the plane, part 1, J. Difference Equ. Appl., 2010, 16(8), 975–1013 http://dx.doi.org/10.1080/10236190802649727 | Zbl 1218.39001
[3] Camouzis E., Ladas G., Palladino F., Quinn E.P., On the boundedness character of rational equations, part 1, J. Difference Equ. Appl., 2006, 12(5), 503–523 http://dx.doi.org/10.1080/10236190500539311 | Zbl 1104.39003
[4] Knopf P.M., Huang Y.S., On the boundedness character of some rational difference equations, J. Difference Equ. Appl., 2008, 14(7), 769–777 http://dx.doi.org/10.1080/10236190701852695 | Zbl 1153.39016
[5] Lugo G., Palladino F.J., Unboundedness results for systems, Cent. Eur. J. Math., 2009, 7(4), 741–756 http://dx.doi.org/10.2478/s11533-009-0051-2 | Zbl 1185.39001
[6] Palladino F.J., Difference inequalities, comparison tests, and some consequences, Involve, 2008, 1(1), 91–100 | Zbl 1154.39012