On stability and robust stability of positive linear Volterra equations in Banach lattices
Satoru Murakami ; Pham Ngoc
Open Mathematics, Tome 8 (2010), p. 966-984 / Harvested from The Polish Digital Mathematics Library

We study positive linear Volterra integro-differential equations in Banach lattices. A characterization of positive equations is given. Furthermore, an explicit spectral criterion for uniformly asymptotic stability of positive equations is presented. Finally, we deal with problems of robust stability of positive systems under structured perturbations. Some explicit stability bounds with respect to these perturbations are given.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269541
@article{bwmeta1.element.doi-10_2478_s11533-010-0061-0,
     author = {Satoru Murakami and Pham Ngoc},
     title = {On stability and robust stability of positive linear Volterra equations in Banach lattices},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {966-984},
     zbl = {1218.45013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0061-0}
}
Satoru Murakami; Pham Ngoc. On stability and robust stability of positive linear Volterra equations in Banach lattices. Open Mathematics, Tome 8 (2010) pp. 966-984. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0061-0/

[1] Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 194, Springer, Berlin, 2000 | Zbl 0952.47036

[2] Gripenberg G., Londen L.O., Staffans O.J., Volterra Integral and Functional Equations, Encyclopedia Math. Appl., 34, Cambridge University Press, Cambridge, 1990 | Zbl 0695.45002

[3] Henríquez H. R., Periodic solutions of quasi-linear partial functional differential equations with unbounded delay, Funkcial. Ekvac., 1994, 37(2), 329–343 | Zbl 0814.35141

[4] Hille E., Phillips R.S., Functional Analysis and Semigroups, Amer. Math. Soc. Colloq. Publ., 31, AMS, Providence, 1957 | Zbl 0078.10004

[5] Hino Y., Murakami S., Stability properties of linear Volterra integrodifferential equations in a Banach space, Funkcial. Ekvac., 2005, 48(3), 367–392 http://dx.doi.org/10.1619/fesi.48.367 | Zbl 1113.45013

[6] Kantorovich L.V., Akilov G.P., Functional Analysis, Pergamon Press, 1982 | Zbl 0484.46003

[7] Meyer-Nieberg P., Banach Lattices, Universitext, Springer, Berlin, 1991 | Zbl 0743.46015

[8] Nagel R. (ed.), One-parameter Semigroups of Positive Operators, Lecture Notes in Math., 1184, Springer, Berlin, 1986

[9] Ngoc P.H.A., Son N.K., Stability radii of linear systems under multi-perturbations, Numer. Funct. Anal. Optim., 2004, 25(3–4), 221–238 http://dx.doi.org/10.1081/NFA-120039610

[10] Ngoc P.H.A., Son N.K., Stability radii of positive linear functional differential equations under multi-perturbations, SIAM J. Control Optim., 2005, 43(6), 2278–2295 http://dx.doi.org/10.1137/S0363012903434789 | Zbl 1090.34061

[11] Ngoc P.H.A., Minh N.V., Naito T., Stability radii of positive linear functional differential systems in Banach spaces, Int. J. Evol. Equ., 2007, 2(1), 75–97 | Zbl 1127.34044

[12] Ngoc P.H.A., Naito T., Shin J.S., Murakami S., On stability and robust stability of positive linear Volterra equations, SIAM J. Control Optim., 2008, 47(2), 975–996 http://dx.doi.org/10.1137/070679740 | Zbl 1206.45009

[13] Protter M.H., Weinberger H.F., Maximum Principles in Differential Equations, Springer, New York, 1984 | Zbl 0549.35002

[14] Prüss J., Evolutionary Integral Equations and Applications, Monogr. Math., 87, Birkhäuser, Basel, 1993

[15] Schaefer H.H., Banach Lattices and Positive Operators, Grundlehren Math. Wiss., 215, Springer, Berlin, 1974 | Zbl 0296.47023

[16] Stewart H.B., Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc., 1980, 259(1), 299–310 | Zbl 0451.35033

[17] Zaanen A.C., Introduction to Operator Theory in Riesz Spaces, Springer, Berlin, 1997 | Zbl 0878.47022