A spectral estimate for the Dirac operator on Riemannian flows
Nicolas Ginoux ; Georges Habib
Open Mathematics, Tome 8 (2010), p. 950-965 / Harvested from The Polish Digital Mathematics Library

We give a new upper bound for the smallest eigenvalues of the Dirac operator on a Riemannian flow carrying transversal Killing spinors. We derive an estimate on both Sasakian and 3-dimensional manifolds, and partially classify those satisfying the limiting case. Finally, we compare our estimate with a lower bound in terms of a natural tensor depending on the eigenspinor.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269726
@article{bwmeta1.element.doi-10_2478_s11533-010-0060-1,
     author = {Nicolas Ginoux and Georges Habib},
     title = {A spectral estimate for the Dirac operator on Riemannian flows},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {950-965},
     zbl = {1221.53054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0060-1}
}
Nicolas Ginoux; Georges Habib. A spectral estimate for the Dirac operator on Riemannian flows. Open Mathematics, Tome 8 (2010) pp. 950-965. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0060-1/

[1] Alexandrov B., Grantcharov G., Ivanov S., An estimate for the first eigenvalue of the Dirac operator on compact Riemannian spin manifolds admitting a parallel one-form, J. Geom. Phys., 1998, 28(3–4), 263–270 http://dx.doi.org/10.1016/S0393-0440(97)00080-6 | Zbl 0934.58026

[2] Ammann B., Bär C., The Dirac operator on nilmanifolds and collapsing circle bundles, Ann. Global Anal. Geom., 1998, 16(3), 221–253 http://dx.doi.org/10.1023/A:1006553302362 | Zbl 0911.58037

[3] Bär C., Metrics with harmonic spinors, Geom. Funct. Anal., 1996, 6(6), 899–942 http://dx.doi.org/10.1007/BF02246994 | Zbl 0867.53037

[4] Bär C., Extrinsic bounds for eigenvalues of the Dirac operator, Ann. Global Anal. Geom., 1998, 16(6), 573–596 http://dx.doi.org/10.1023/A:1006550532236 | Zbl 0921.58065

[5] Bär C., Gauduchon P., Moroianu A., Generalized cylinders in semi-Riemannian and spin geometry, Math. Z., 2005, 249(3), 545–580 http://dx.doi.org/10.1007/s00209-004-0718-0 | Zbl 1068.53030

[6] Belgun F.A., On the metric structure of non-Kähler complex surfaces, Math. Ann., 2000, 317(1), 1–40 http://dx.doi.org/10.1007/s002080050357 | Zbl 0988.32017

[7] Boyer C.P., Galicki K., On Sasakian-Einstein geometry, Internat. J. Math., 2000, 11(7), 873–909 http://dx.doi.org/10.1142/S0129167X00000477 | Zbl 1022.53038

[8] Boyer C.P., Galicki K., Matzeu P., On η-Einstein Sasakian geometry, Comm. Math. Phys., 2006, 262(1), 177–208 http://dx.doi.org/10.1007/s00220-005-1459-6 | Zbl 1103.53022

[9] Carrière Y., Flots riemanniens, In: Structure transverse des feuilletages, Toulouse 1982, Astérisque, 1984, 116, 31–52

[10] Chavel I., Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, 115, Academic Press, Orlando, 1984

[11] Friedrich T., Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr., 1980, 97(1), 117–146 http://dx.doi.org/10.1002/mana.19800970111 | Zbl 0462.53027

[12] Friedrich T., Zur Abhängigkeit des Dirac-Operators von der Spin-Struktur, Colloq. Math., 1984, 48, 57–62 | Zbl 0542.53026

[13] Geiges H., Normal contact structures on 3-manifolds, Tôhoku Math. J., 1997, 49(3), 415–422 http://dx.doi.org/10.2748/tmj/1178225112 | Zbl 0897.53024

[14] Ginoux N., Habib G., Geometric aspects of transversal Killing spinors on Riemannian flows, Abh. Math. Sem. Univ. Hamburg, 2008, 78(1), 69–90 http://dx.doi.org/10.1007/s12188-008-0006-8 | Zbl 1177.53025

[15] Habib G., Tenseur d’impulsion-énergie et feuilletages, Ph.D. thesis, Université Henri Poincaré - Nancy 1, 2006

[16] Hijazi O., Lower bounds for the eigenvalues of the Dirac operator, J. Geom. Phys., 1995, 16(1), 27–38 http://dx.doi.org/10.1016/0393-0440(94)00019-Z

[17] Kim E.C., Friedrich T., The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys., 2000, 33(1–2), 128–172 http://dx.doi.org/10.1016/S0393-0440(99)00043-1 | Zbl 0961.53023

[18] Okumura M., Some remarks on space with a certain contact structure, Tôhoku Math. J., 1962, 14(2), 135–145 http://dx.doi.org/10.2748/tmj/1178244168 | Zbl 0119.37701

[19] O’Neill B., The fundamental equations of a submersion, Michigan Math. J., 1966, 13(4), 459–469 http://dx.doi.org/10.1307/mmj/1028999604

[20] Pfäffle F., The Dirac spectrum of Bieberbach manifolds, J. Geom. Phys., 2000, 35(4), 367–385 http://dx.doi.org/10.1016/S0393-0440(00)00005-X | Zbl 0984.58017

[21] Reinhart B.L., Foliated manifolds with bundle-like metrics, Ann. of Math., 1959, 69(1), 119–132 http://dx.doi.org/10.2307/1970097 | Zbl 0122.16604

[22] Tanno S., The topology of contact Riemannian manifolds, Illinois J. Math., 1968, 12(4), 700–717 | Zbl 0165.24703

[23] Tondeur P., Foliations on Riemannian Manifolds, Springer, Berlin, 1988

[24] Trautman A., Spinors and the Dirac operator on hypersurfaces. I: General theory, J. Math. Phys., 1992, 33(12), 4011–4019 http://dx.doi.org/10.1063/1.529852 | Zbl 0769.58055