Korovkin-type approximation theory usually deals with convergence analysis for sequences of positive operators. In this work we present qualitative Korovkin-type convergence results for a class of sequences of non-positive operators, more precisely regular operators with vanishing negative parts under a limiting process. Sequences of that type are called sequences of almost positive linear operators and have not been studied before in the context of Korovkin-type approximation theory. As an example we show that operators related to the multivariate scattered data interpolation technique moving least squares interpolation originally due to Lancaster and Šalkauskas [Surfaces generated by moving least squares methods, Math. Comp., 1981, 37, 141–158] give rise to such sequences. This work also generalizes Korovkin-type results regarding Shepard interpolation [Korovkin-type convergence results for multivariate Shepard formulae, Rev. Anal. Numér. Théor. Approx., 2009, 38, 170–176] due to the author. Moreover, this work establishes connections and differences between the concepts of sequences of almost positive linear operators and sequences of quasi-positive or convexity-monotone linear operators introduced and studied by Campiti in [Convexity-monotone operators in Korovkin theory, Rend. Circ. Mat. Palermo (2) Suppl., 1993, 33, 229–238].
@article{bwmeta1.element.doi-10_2478_s11533-010-0058-8, author = {Oliver Nowak}, title = {Korovkin-type convergence results for non-positive operators}, journal = {Open Mathematics}, volume = {8}, year = {2010}, pages = {890-907}, zbl = {1220.41004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0058-8} }
Oliver Nowak. Korovkin-type convergence results for non-positive operators. Open Mathematics, Tome 8 (2010) pp. 890-907. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0058-8/
[1] Agratini O., On approximation of functions by positive linear operators, Stud. Cercet. Ştiinţ. Ser. Mat. Univ. Bacąau, 2006, 16 Suppl., 17–28 | Zbl 1174.41334
[2] Altomare F., Campiti M., Korovkin-type Approximation Theory and its Applications, de Gruyter Stud. Math., 17, de Gruyter, Berlin-New York, 1994 | Zbl 0924.41001
[3] Bohman H., On approximation of continuous and of analytic functions, Ark. Mat., 1952, 2(1), 43–56 http://dx.doi.org/10.1007/BF02591381 | Zbl 0048.29901
[4] Campiti M., Convexity-monotone operators in Korovkin theory, In: Proceedings of the 2nd International Conference in Functional Analysis and Approximation Theory, Acquafredda di Maratea (Potenza), September 14–19, 1992, Rend. Circ. Mat. Palermo (2) Suppl., 1994, 33, 229–238
[5] DeVore R.A., The Approximation of Continuous Functions by Positive Linear Operators, Lecture Notes in Math., 293, Springer, Berlin-Heidelberg-New York, 1972 | Zbl 0276.41011
[6] Farwig R., Multivariate interpolation of scattered data by moving least squares methods, In: Algorithms for Approximation, Proc. IMA Conf., Shrivenham, July 1985, The Institute of Mathematics and its Applications Conference Series, New Series, 10, Clarendon Press, Oxford, 1987, 193–211
[7] Farwig R., Rate of convergence for moving least squares interpolation methods: the univariate case, In: Progress in Approximation Theory, Academic Press, 1991, 313–327
[8] Korovkin P.P., On convergence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR, 1953, 90, 961–964, (in Russian)
[9] Korovkin P.P., Linear Operators and Approximation Theory, International Monographs on advanced Mathematics & Physics, Hindustan Publishing Corp., Delhi, 1960 | Zbl 0094.10201
[10] Lancaster P., Šalkauskas K., Surfaces generated by moving least squares methods, Math. Comp., 1981, 37(155), 141–158 | Zbl 0469.41005
[11] Levin D., The approximation power of moving least-squares, Math. Comp., 1998, 67(224), 1517–1531 http://dx.doi.org/10.1090/S0025-5718-98-00974-0 | Zbl 0911.41016
[12] Lorentz G.G., Approximation of Functions, 2nd ed., Chelsea Publishing Company, New York, 1986 | Zbl 0643.41001
[13] Muñoz-Delgado F.J., Ramírez-González V., Cárdenas-Morales D., Qualitative Korovkin-type results on conservative approximation, J. Approx. Theory, 1998, 94(1), 144–159 http://dx.doi.org/10.1006/jath.1998.3182 | Zbl 0911.41015
[14] Netuzhylov H., Sonar T., Yomsatieankul W., Finite difference operators from moving least squares interpolation, ESAIM, Math. Model. Numer. Anal., 2007, 41(5), 959–974 http://dx.doi.org/10.1051/m2an:2007042 | Zbl 1153.65356
[15] Nishishiraho T., Convergence of quasi-positive linear operators, Atti Semin. Mat. Fis. Univ. Modena, 1992, 40(2), 519–526 | Zbl 0799.47016
[16] Nowak O., Exakte kleinste Quadrate Interpolierende: Konvergenzresultate vom Korovkin-Typ und Anwendungen im Kontext der numerischen Approximation von Erhaltungsgleichungen, Ph.D. thesis, TU Braunschweig, 2009
[17] Nowak O., Korovkin-type convergence results for multivariate Shepard formulae, Rev. Anal. Numér. Théor. Approx., 2009, 38(2), 170–176 | Zbl 1224.41009
[18] Nowak O., High-order convergence of Moving Least Squares Interpolation under regular data distributions, preprint available at http://public.me.com/oliver.nowak/highorder.pdf
[19] Nowak O., Sonar T., Upwind-biased finite difference approximations from interpolating moving least squares, preprint available at http://public.me.com/oliver.nowak/upwind.pdf
[20] Popoviciu T., Asupra demonstratiei teoremei lui Weierstrass cu ajutorul polinoamelor de interpolare, Editura Academiei Republicii Populare Române, 1951, 1664–1667
[21] Popoviciu T., On the proof of Weierstrass’ theorem using interpolation polynomials (translated by Daniela Kasco), East J. Approx., 1998, 4(1), 107–110 | Zbl 0914.41001
[22] Shepard D., A two-dimensional interpolation function for irregularly-spaced data, In: Proceedings of the 23rd ACM National Conference, 1968, 517–524
[23] Sonar T., Difference operators from interpolating moving least squares and their deviation from optimality, ESAIM, Math. Model. Numer. Anal., 2005, 39(5), 883–908 http://dx.doi.org/10.1051/m2an:2005039 | Zbl 1085.39018
[24] Wendland H., Scattered Data Approximation, Cambridge Monogr. Appl. Comput. Math., 17, Cambridge University Press, Cambridge, 2005