Generators of existence varieties of regular rings and complemented Arguesian lattices
Christian Herrmann ; Marina Semenova
Open Mathematics, Tome 8 (2010), p. 827-839 / Harvested from The Polish Digital Mathematics Library

We proved in an earlier work that any existence variety of regular algebras is generated by its simple unital Artinian members, while any existence variety of Arguesian sectionally complemented lattices is generated by its simple members of finite length. A characterization of the class of simple unital Artinian members [members of finite length, respectively] of such varieties is given in the present paper.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:268988
@article{bwmeta1.element.doi-10_2478_s11533-010-0056-x,
     author = {Christian Herrmann and Marina Semenova},
     title = {Generators of existence varieties of regular rings and complemented Arguesian lattices},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {827-839},
     zbl = {1248.06008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0056-x}
}
Christian Herrmann; Marina Semenova. Generators of existence varieties of regular rings and complemented Arguesian lattices. Open Mathematics, Tome 8 (2010) pp. 827-839. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0056-x/

[1] Birkhoff G., Lattice Theory, 3rd ed., American Mathematical Society Colloquium Publications, 25, American Mathematical Society, Providence, 1967

[2] Cohn P.M., Introduction to Ring Theory, Springer Undergraduate Mathematics Series, Springer, London, 2000 | Zbl 0937.16001

[3] Crawley P., Dilworth R.P., Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, 1973 | Zbl 0494.06001

[4] Goodearl K.R., Von Neumann Regular Rings, 2nd ed., Robert E. Krieger, Malabar, 1991

[5] Goodearl K.R., Menal P., Moncasi J., Free and residually Artinian regular rings, J. Algebra, 1993, 156(2), 407–432 http://dx.doi.org/10.1006/jabr.1993.1082 | Zbl 0780.16006

[6] Hall T.E., Identities for existence varieties of regular semigroups, Bull. Austral. Math. Soc., 1989, 40(1), 59–77 http://dx.doi.org/10.1017/S000497270000349X | Zbl 0666.20028

[7] Herrmann C., Generators for complemented modular lattices and the von Neumann-Jónsson coordinatization theorems, Algebra Universalis, (in press), DOI: 10.1007/s00012-010-0064-5 | Zbl 1205.06004

[8] Herrmann C., Huhn A.P., Zum Begriff der Charakteristik modularer Verbände, Math. Z., 1975, 144(3), 185–194 http://dx.doi.org/10.1007/BF01214134 | Zbl 0316.06006

[9] Herrmann C., Semenova M., Existence varieties of regular rings and complemented modular lattices, J. Algebra, 2007, 314(1), 235–251 http://dx.doi.org/10.1016/j.jalgebra.2007.01.038 | Zbl 1139.06003

[10] Jipsen P., Rose H., Varieties of Lattices, Lecture Notes in Mathematics, 1533, Springer, Berlin, 1992 | Zbl 0779.06005

[11] Jónsson B., Representations of complemented modular lattices, Trans. Amer. Math. Soc., 1960, 97, 64–94 http://dx.doi.org/10.2307/1993364 | Zbl 0101.02204

[12] Kad’ourek J., Szendrei M.B., On existence varieties of E-solid semigroups, Semigroup Forum, 1999, 59(3), 470–521 http://dx.doi.org/10.1007/s002339900066

[13] Maeda F., Kontinuierliche Geometrien, Die Grundlehren der mathematischen Wissenschaften, 95, Springer, Berlin, 1958

[14] Mal’cev A.I., Algebraic Systems, Die Grundlehren der mathematischen Wissenschaften, 192, Springer, Berlin, 1973

[15] von Neumann J., Continuous Geometry, Princeton Mathematical Series, 25, Princeton University Press, Princeton, 1960

[16] Skornyakov L.A., Complemented Modular Lattices and Regular Rings, Oliver & Boyd, Edinburgh-London, 1964 | Zbl 0156.04101

[17] Veblen O., Young J.W., Projective Geometry I, Ginn & Co., Boston, 1910