Generalizations of Jensen-Steffensen and related integral inequalities for superquadratic functions
Shoshana Abramovich ; Slavica Ivelić ; Josip Pečarić
Open Mathematics, Tome 8 (2010), p. 937-949 / Harvested from The Polish Digital Mathematics Library

We present integral versions of some recently proved results which improve the Jensen-Steffensen and related inequalities for superquadratic functions. For superquadratic functions which are not convex we get inequalities analogous to the integral Jensen-Steffensen inequality for convex functions. Therefore, we get refinements of all the results which use only the convexity of these functions. One of the inequalities that we obtain for a superquadratic function φ is y¯φx¯+1λβ-λααβφft-x¯dλt , where x¯=1λβ-λααβftdλt and y¯=1λβ-λααβφftdλt which under suitable conditions like those satisfied by functions of power equal or more than 2, is a refinement of the Jensen-Steffensen-Boas inequality. We also prove related results of Mercer’s type.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269389
@article{bwmeta1.element.doi-10_2478_s11533-010-0055-y,
     author = {Shoshana Abramovich and Slavica Iveli\'c and Josip Pe\v cari\'c},
     title = {Generalizations of Jensen-Steffensen and related integral inequalities for superquadratic functions},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {937-949},
     zbl = {1217.26038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0055-y}
}
Shoshana Abramovich; Slavica Ivelić; Josip Pečarić. Generalizations of Jensen-Steffensen and related integral inequalities for superquadratic functions. Open Mathematics, Tome 8 (2010) pp. 937-949. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0055-y/

[1] Abramovich S., Ivelić S., Pečarić J., Improvement of Jensen-Steffensen’s inequality for superquadratic functions, Banach J. Math. Anal., 2010, 4(1), 159–169 | Zbl 1195.26037

[2] Abramovich S., Jameson G., Sinnamon G., Refining Jensen’s inequality, Bull. Math. Soc. Sci. Math. Roumanie, 2004, 47(95)(1–2), 3–14 | Zbl 1150.26333

[3] Abramovich S., Jameson G., Sinnamon G., Inequalities for averages of convex and superquadratic functions, JIPAM. J. Inequal. Pure Appl. Math., 2004, 5(4), article 91 | Zbl 1057.26009

[4] Boas R.P., The Jensen-Steffensen inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 1970, 302–319, 1–8 | Zbl 0213.34601

[5] Klaričić Bakula M., Matić M., Pečarić J., On some general inequalities related to Jensen’s inequality, In: International Series of Numerical Mathematics, 157, Inequalities and Applications, Conference on Inequalities and Applications, Noszvaj (Hungary), September 2007, Birkhäuser, Basel, 2008, 233–243 | Zbl 1266.26044

[6] Klaričić Bakula M., Matić M., Pečarić J., Generalizations of the Jensen-Steffensen and related inequalities, Cent. Eur. J. Math., 2009, 7(4), 787–803 http://dx.doi.org/10.2478/s11533-009-0052-1 | Zbl 1183.26020

[7] Mercer A.McD., A variant of Jensen’s inequality, JIPAM. J. Inequal. Pure Appl. Math., 2003, 4(4), article 73 | Zbl 1048.26016

[8] Pečarić J.E., Proschan F., Tong Y.L., Convex Functions, Partial Orderings, and Statistical Applications, Math. Sci. Eng., 187, Academic Press, Boston, 1992 | Zbl 0749.26004