We prove that density preserving homeomorphisms form a Π11-complete subset in the Polish space ℍ of all increasing autohomeomorphisms of unit interval.
@article{bwmeta1.element.doi-10_2478_s11533-010-0054-z, author = {Szymon G\l \k ab and Filip Strobin}, title = {Descriptive properties of density preserving autohomeomorphisms of the unit interval}, journal = {Open Mathematics}, volume = {8}, year = {2010}, pages = {928-936}, zbl = {1217.28001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0054-z} }
Szymon Głąb; Filip Strobin. Descriptive properties of density preserving autohomeomorphisms of the unit interval. Open Mathematics, Tome 8 (2010) pp. 928-936. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0054-z/
[1] Bruckner A.M., Density-preserving homeomorphisms and a theorem of Maximoff, Quart. J. Math. Oxford, 1970, 21(3), 337–347 http://dx.doi.org/10.1093/qmath/21.3.337 | Zbl 0196.07701
[2] Ciesielski K., Larson L., Ostaszewski K., -Density Continuous Functions, Mem. Amer. Math. Soc., 1994, 107(515) | Zbl 0801.26001
[3] Głab S., Descriptive properties of families of autohomeomorphisms of the unit interval, J. Math. Anal. Appl., 2008, 343(2), 835–841 http://dx.doi.org/10.1016/j.jmaa.2008.01.068 | Zbl 1151.03024
[4] Kechris A.S., Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer, New York, 1995 | Zbl 0819.04002
[5] Niewiarowski J., Density-preserving homeomorphisms, Fund. Math., 1980, 106(2), 77–87 | Zbl 0447.28015
[6] Ostaszewski K., Continuity in the density topology II, Rend. Circ. Mat. Palermo, 1983, 32(3), 398–414 http://dx.doi.org/10.1007/BF02848542 | Zbl 0564.26001