On equivalent strictly G-convex renormings of Banach spaces
Nataliia Boyko
Open Mathematics, Tome 8 (2010), p. 871-877 / Harvested from The Polish Digital Mathematics Library

We study strictly G-convex renormings and extensions of strictly G-convex norms on Banach spaces. We prove that ℓω(Γ) space cannot be strictly G-convex renormed given Γ is uncountable and G is bounded and separable.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269086
@article{bwmeta1.element.doi-10_2478_s11533-010-0050-3,
     author = {Nataliia Boyko},
     title = {On equivalent strictly G-convex renormings of Banach spaces},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {871-877},
     zbl = {1230.46013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0050-3}
}
Nataliia Boyko. On equivalent strictly G-convex renormings of Banach spaces. Open Mathematics, Tome 8 (2010) pp. 871-877. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0050-3/

[1] Boyko N., On arrangement of operators coefficients of series member, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh., 2008, 826(58), 197–210, (in Russian) | Zbl 1164.46306

[2] Boyko N., Kadets V., Uniform G-convexity for vector-valued L p spaces, Serdica Math. J., 2009, 35, 1–14 | Zbl 1224.46020

[3] Conway J.B., A Course in Functional Analysis, 2nd ed., Graduate Texts in Mathematics, 96, Springer, New York, 1990 | Zbl 0706.46003

[4] Diestel J., Geometry of Banach Spaces - Selected Topics, Lecture Notes in Mathematics, 485, Springer, New York, 1975 | Zbl 0307.46009

[5] Kadets V.M., A Course in Functional Analysis. Textbook for students of mechanics and mathematics, Kharkov State University, Kharkov, 2006, (in Russian) | Zbl 1128.46001

[6] Tang W.-K., On the extension of rotund norms, Manuscripta Math., 1996, 91(1), 73–82 http://dx.doi.org/10.1007/BF02567940 | Zbl 0868.46012