Fundamental groups and Diophantine geometry
Minhyong Kim
Open Mathematics, Tome 8 (2010), p. 633-645 / Harvested from The Polish Digital Mathematics Library

This is a brief exposition on the uses of non-commutative fundamental groups in the study of Diophantine problems.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269201
@article{bwmeta1.element.doi-10_2478_s11533-010-0047-y,
     author = {Minhyong Kim},
     title = {Fundamental groups and Diophantine geometry},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {633-645},
     zbl = {1203.14030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0047-y}
}
Minhyong Kim. Fundamental groups and Diophantine geometry. Open Mathematics, Tome 8 (2010) pp. 633-645. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0047-y/

[1] Coates J., Kim M., Selmer varieties for curves with CM Jacobians, preprint available at http://arxiv.org/abs/0810.3354 [WoS] | Zbl 1283.11092

[2] Deligne P., Le groupe fondamental de la droite projective moins trois points, In: Galois groups over ℚ, Berkeley, 1987, Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989, 79–297 [Crossref]

[3] Furusho H., p-adic multiple zeta values. I: p-adic multiple polylogarithms and the p-adic KZ equation, Invent. Math., 2004, 155(2), 253–286 http://dx.doi.org/10.1007/s00222-003-0320-9[Crossref] | Zbl 1061.11034

[4] Kim M., The motivic fundamental group of ℙ1 0; 1;∞ and the theorem of Siegel, Invent. Math., 2005, 161(3), 629–656 http://dx.doi.org/10.1007/s00222-004-0433-9

[5] Kim M., The unipotent Albanese map and Selmer varieties for curves, Publ. Res. Inst. Math. Sci., 2009, 45(1), 89–133 http://dx.doi.org/10.2977/prims/1234361156[WoS][Crossref] | Zbl 1165.14020

[6] Kim M., p-adic L-functions and Selmer varieties associated to elliptic curves with complex multiplication, Ann. of Math., (in press), preprint available at http://arxiv.org/abs/0710.5290 | Zbl 1223.11080

[7] Kim M., Tamagawa A., The ℓ-component of the unipotent Albanese map, Math. Ann., 2008, 340(1), 223–235 http://dx.doi.org/10.1007/s00208-007-0151-x[Crossref][WoS] | Zbl 1126.14035

[8] Weil A., Généralisation des fonctions abéliennes, J. Math. Pures Appl., 1938, 17(9), 47–87 | Zbl 0018.06302