Border bases and kernels of homomorphisms and of derivations
Janusz Zieliński
Open Mathematics, Tome 8 (2010), p. 780-785 / Harvested from The Polish Digital Mathematics Library

Border bases are an alternative to Gröbner bases. The former have several more desirable properties. In this paper some constructions and operations on border bases are presented. Namely; the case of a restriction of an ideal to a polynomial ring (in a smaller number of variables), the case of the intersection of two ideals, and the case of the kernel of a homomorphism of polynomial rings. These constructions are applied to the ideal of relations and to factorizable derivations.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:268991
@article{bwmeta1.element.doi-10_2478_s11533-010-0045-0,
     author = {Janusz Zieli\'nski},
     title = {Border bases and kernels of homomorphisms and of derivations},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {780-785},
     zbl = {1200.13041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0045-0}
}
Janusz Zieliński. Border bases and kernels of homomorphisms and of derivations. Open Mathematics, Tome 8 (2010) pp. 780-785. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0045-0/

[1] Chen Y.F., Meng X.H., Border bases of positive dimensional polynomial ideals, In: Proceedings of the 2007 International Workshop on Symbolic-Numeric Computation, London, Ontario, July 25–27, ACM, New York, 2007, 65–71

[2] Gianni P., Trager B., Zacharias G., Gröbner bases and primary decomposition of polynomial ideals, J. Symbolic Comput., 1988, 6(2–3), 149–167 http://dx.doi.org/10.1016/S0747-7171(88)80040-3[Crossref] | Zbl 0667.13008

[3] Kehrein A., Kreuzer M., Characterizations of border bases, J. Pure Appl. Algebra, 2005, 196(2–3), 251–270 http://dx.doi.org/10.1016/j.jpaa.2004.08.028[Crossref] | Zbl 1081.13011

[4] Kehrein A., Kreuzer M., Computing border bases, J. Pure Appl. Algebra, 2006, 205(2), 279–295 http://dx.doi.org/10.1016/j.jpaa.2005.07.006[Crossref]

[5] Kehrein A., Kreuzer M., Robbiano L., An algebraist’s view on border bases, In: Solving polynomial equations, Algorithms Comput. Math., 14, Springer, Berlin, 2005, 169–202 http://dx.doi.org/10.1007/3-540-27357-3_4[Crossref] | Zbl 1152.13304

[6] Kreuzer M., Robbiano L., Computational Commutative Algebra, 1&2, Springer, Berlin, 2000&2005 http://dx.doi.org/10.1007/978-3-540-70628-1[Crossref]

[7] Nowicki A., Zielinski J., Rational constants of monomial derivations, J. Algebra, 2006, 302(1), 387–418 http://dx.doi.org/10.1016/j.jalgebra.2006.02.034[Crossref] | Zbl 1119.13021

[8] Zieliński J., Factorizable derivations and ideals of relations, Comm. Algebra, 2007, 35(3), 983–997 http://dx.doi.org/10.1080/00927870601117639[WoS][Crossref] | Zbl 1171.13013