A glimpse of deductive systems in algebra
Dumitru Buşneag ; Sergiu Rudeanu
Open Mathematics, Tome 8 (2010), p. 688-705 / Harvested from The Polish Digital Mathematics Library

The concept of a deductive system has been intensively studied in algebraic logic, per se and in connection with various types of filters. In this paper we introduce an axiomatization which shows how several resembling theorems that had been separately proved for various algebras of logic can be given unique proofs within this axiomatic framework. We thus recapture theorems already known in the literature, as well as new ones. As a by-product we introduce the class of pre-BCK algebras.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269026
@article{bwmeta1.element.doi-10_2478_s11533-010-0041-4,
     author = {Dumitru Bu\c sneag and Sergiu Rudeanu},
     title = {A glimpse of deductive systems in algebra},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {688-705},
     zbl = {1216.03066},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0041-4}
}
Dumitru Buşneag; Sergiu Rudeanu. A glimpse of deductive systems in algebra. Open Mathematics, Tome 8 (2010) pp. 688-705. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0041-4/

[1] Abbott J.C., Implicational algebras, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 1967, 11(59), 3–23

[2] Abbott J.C., Semi-boolean algebra, Mat. Vesnik., 1967, 4(19), 177–198 | Zbl 0153.02704

[3] Birkhoff G., Lattice Theory, 3rd ed., American Mathematical Society, Providence, 1967

[4] Boicescu V., Filipoiu A., Georgescu G., Rudeanu S., Łukasiewicz-Moisil Algebras, North-Holland, Amsterdam, 1991 | Zbl 0726.06007

[5] Buşneag D., Contribuţi la studiul algebrelor Hilbert, Ph.D. thesis, Univ. Bucharest, 1985

[6] Buşneag D., On the maximal deductive systems of a bounded Hilbert algebra, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 1987, 31(79)(1), 9–21

[7] Buşneag D., Hertz algebras of fractions and maximal Hertz algebra of quotients, Math. Japon., 1994, 39(3), 461–469 | Zbl 0810.06011

[8] Buşneag D., Categories of Algebraic Logic, Editura Academiei Române, Bucharest, 2006 | Zbl 05191994

[9] Buşneag D., Piciu D., On the lattice of deductive systems of a BL-algebra, Cent. Eur. J. Math., 2003, 1(2), 221–237 http://dx.doi.org/10.2478/BF02476010[Crossref] | Zbl 1040.03047

[10] Celani S.A., Cabrer L.M., Montangie D., Representation and duality for Hilbert algebras, Cent. Eur. J. Math., 2009, 7(3), 463–478 http://dx.doi.org/10.2478/s11533-009-0032-5[Crossref][WoS] | Zbl 1184.03064

[11] Chajda I., The lattice of deductive systems on Hilbert algebras, Southeast Asian Bull. Math., 2002, 26(1), 21–26 http://dx.doi.org/10.1007/s100120200022[Crossref] | Zbl 1010.03054

[12] Chajda I., Halaš R., Algebraic properties of pre-logics, Math. Slovaca, 2002, 52(2), 157–175 | Zbl 1007.08003

[13] Chajda I., Halaš R., Abbott groupoids, J. Mult.-Valued Logic Soft Comput., 2004, 10(4), 385–394

[14] Chajda I., Halaš R., Deductive systems and Galois connections, In: Galois Connections and Applications, Kluwer, Dordrecht, 2004, 399–411 | Zbl 1079.08001

[15] Chajda I., Halaš R., Distributive implication groupoids, Cent. Eur. J. Math., 2007, 5(3), 484–492 http://dx.doi.org/10.2478/s11533-007-0021-5[Crossref][WoS] | Zbl 1134.03042

[16] Chajda I., Halaš R., Kuhr J., Semilattice Structures, Heldermann, Lemgo, 2007

[17] Cignoli R., Algebras de Moisil de order n, Ph.D. thesis, Universidad Nacional del Sur, Bahía Blanca, 1969

[18] Diego A., Sobre álgebras de Hilbert, Notas de Lógica Matematica, 12, Instituto de Matemática, Univ. Nacional del Sur, Bahía Blanca, 1965

[19] Diego A., Sur les algèbres de Hilbert, Collection de Logique Math., Sér. A, 21, Gauthier-Villars, Paris, 1966

[20] Figallo A., Ziliani A., Remarks on Hertz algebras and implicative semilattices, Bull. Sect. Logic Univ. Łódź, 2005, 34(1), 37–42 | Zbl 1114.03312

[21] Georgescu G., Algebra logicii - logica algebrică (I), Revista de Logică, 2009, 2, available at: http://egovbus.net/rdl/articole/No1Art34.pdf

[22] Grätzer G., Universal Algebra, 2nd ed., Springer, New York-Heidelberg, 1979

[23] Halaš R., Ideals and D-systems in orthoimplication algebras, J. Mult.-Valued Logic Soft Comput., 2005, 11(3–4), 309–316

[24] Iorgulescu A., Algebras of Logic as BCK Algebras, Editura ASE, Bucharest, 2008 | Zbl 1172.03038

[25] Iséki K., Tanaka S., Ideal theory of BCK-algebras, Math. Japon., 1976, 21(4), 351–366 | Zbl 0355.02041

[26] Jun Y.B., Deductive systems of Hilbert algebras, Math. Japon., 1996, 43(1), 51–54 | Zbl 0844.03033

[27] Katriňák T., Bemerkung über pseudokomplementaren halbgeordneten Mengen, Acta Fac. Rerum Natur. Univ. Comenian. Math., 1968, 19, 181–185

[28] Liu L.Z., Li K.T., Boolean filters and positive implicative filters of residuated lattices, Inform. Sci., 2007, 177(24), 5725–5738 http://dx.doi.org/10.1016/j.ins.2007.07.014[WoS][Crossref] | Zbl 1127.06013

[29] Monteiro A., L’arithmétique des filtres et les espaces topologiques, In: De Segundo Symposium de Matematicas-Villavicencio (Mendoza, Buenos Aires), 21–25 July 1954, Centro di Cooperacion UNESCO para America Latina, Montevideo, 129–172; Notas de Lógica Matemática, 1974, 30, 157

[30] Monteiro A., Sur la définition des algebres de Łukasiewicz trivalentes, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine, 1963, 7(55), 3–12 | Zbl 0143.00605

[31] Nemitz W.C., On the lattice of filters of an implicative semi-lattice, J. Math. Mech., 1968/69, 18, 683–688 | Zbl 0169.02101

[32] Pałasiński M., On ideal and congruence lattices of BCK algebras, Math. Japon., 1981, 26(5), 543–544 | Zbl 0476.03064

[33] Piciu D., Algebras of Fuzzy Logic, Ed. Universitaria Craiova, 2007

[34] Rasiowa H., An Algebraic Approach to Non-Classical Logics, North-Holland, Amsterdam, 1974 | Zbl 0299.02069

[35] Roman S., Lattices and Ordered Sets, Springer, New York, 2008 | Zbl 1154.06001

[36] Rudeanu S., On relatively pseudocomplemented posets and Hilbert algebras, An. Śtiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat., 1985, 31(suppl.), 74–77

[37] Rudeanu S., Localizations and fractions in algebra of logic, J. Mult.-Valued Logic Soft Comput., 2010, 16(3–5), 467–504

[38] Turunen E., Mathematics Behind Fuzzy Logic, Physica-Verlag, Heidelberg, 1999 | Zbl 0940.03029

[39] Turunen E., BL-algebras of basic fuzzy logic, Mathware Soft Comput., 1999, 6(1), 49–61 | Zbl 0962.03020