LΣ(≤ ω)-spaces and spaces of continuous functions
Israel Lara ; Oleg Okunev
Open Mathematics, Tome 8 (2010), p. 754-762 / Harvested from The Polish Digital Mathematics Library

We present a few results and problems related to spaces of continuous functions with the topology of pointwise convergence and the classes of LΣ(≤ ω)-spaces; in particular, we prove that every Gul’ko compact space of cardinality less or equal to 𝔠 is an LΣ(≤ ω)-space.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269123
@article{bwmeta1.element.doi-10_2478_s11533-010-0039-y,
     author = {Israel Lara and Oleg Okunev},
     title = {L$\Sigma$($\leq$ $\omega$)-spaces and spaces of continuous functions},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {754-762},
     zbl = {1209.54005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0039-y}
}
Israel Lara; Oleg Okunev. LΣ(≤ ω)-spaces and spaces of continuous functions. Open Mathematics, Tome 8 (2010) pp. 754-762. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0039-y/

[1] Arhangel’skĭ A.V., Factorization theorems and function spaces: stability and monolithicity, Soviet Math. Dokl., 1982, 26(1), 177–181

[2] Arhangel’skĭ A.V., Topological Function Spaces, Kluwer, Dordrecht, 1992

[3] Casarrubias Segura F., Okunev O., Paniagua Ramírez C.G., Some results on LΣ(κ)-spaces, Comment. Math. Univ. Carolin., 2008, 49(4), 667–675 | Zbl 1212.54075

[4] Engelking R., On the double circumference of Alexandroff, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 1968, 16(8), 629–634 | Zbl 0167.21001

[5] Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989

[6] Kubiś W., Okunev O., Szeptycki P.J., On some classes of Lindelöf Σ-spaces, Topology Appl., 2006, 153(14), 2574–2590 http://dx.doi.org/10.1016/j.topol.2005.09.009[WoS][Crossref] | Zbl 1102.54028

[7] Nagami K., Σ-spaces, Fund. Math., 1969, 65, 169–192

[8] Okunev O., A method for constructing examples of M-equivalent spaces, Topology Appl. 1990, 36(2), 157–171, Correction: Topology Appl., 1993, 49(2), 191-192 http://dx.doi.org/10.1016/0166-8641(90)90006-N[Crossref] | Zbl 0707.54007

[9] Okunev O., On Lindelöf Σ-spaces of continuous functions in the pointwise topology, Topology Appl., 1993, 49(2), 149–166 http://dx.doi.org/10.1016/0166-8641(93)90041-B[Crossref]

[10] Okunev O., Tamano K., Lindelöf powers and products of function spaces, Proc. Amer. Math. Soc., 1996, 124(9), 2905–2916 http://dx.doi.org/10.1090/S0002-9939-96-03629-5[Crossref] | Zbl 0858.54013

[11] Simon P., On continuous image of Eberlein compacts, Comment. Math. Univ. Carolinae, 1976, 17(1), 179–194 | Zbl 0322.54014

[12] Sokolov G.A., On some classes of compact spaces lying in Σ-products, Comment. Math. Univ. Carolinae, 1984, 25(2), 219–231 | Zbl 0577.54014

[13] Tkachuk V.V., A glance at compact spaces which map “nicely” onto the metrizable ones, Topology Proc., 1994, 19, 321–334 | Zbl 0854.54022