Characteristic polynomials of sample covariance matrices: The non-square case
Holger Kösters
Open Mathematics, Tome 8 (2010), p. 763-779 / Harvested from The Polish Digital Mathematics Library

We consider the sample covariance matrices of large data matrices which have i.i.d. complex matrix entries and which are non-square in the sense that the difference between the number of rows and the number of columns tends to infinity. We show that the second-order correlation function of the characteristic polynomial of the sample covariance matrix is asymptotically given by the sine kernel in the bulk of the spectrum and by the Airy kernel at the edge of the spectrum. Similar results are given for real sample covariance matrices.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269406
@article{bwmeta1.element.doi-10_2478_s11533-010-0035-2,
     author = {Holger K\"osters},
     title = {Characteristic polynomials of sample covariance matrices: The non-square case},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {763-779},
     zbl = {1204.15044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0035-2}
}
Holger Kösters. Characteristic polynomials of sample covariance matrices: The non-square case. Open Mathematics, Tome 8 (2010) pp. 763-779. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0035-2/

[1] Abramowitz M., Stegun I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1965 | Zbl 0171.38503

[2] Akemann G., Fyodorov Y.V., Universal random matrix correlations of ratios of characteristic polynomials at the spectral edges, Nuclear Phys. B, 2003, 664(3), 457–476 http://dx.doi.org/10.1016/S0550-3213(03)00458-9[Crossref] | Zbl 1024.82012

[3] Baik J., Deift P., Strahov E., Products and ratios of characteristic polynomials of random Hermitian matrices. Integrability, topological solitons and beyond, J. Math. Phys., 2003, 44(8), 3657–3670 http://dx.doi.org/10.1063/1.1587875[Crossref] | Zbl 1062.15014

[4] Ben Arous G., Péché S., Universality of local eigenvalue statistics for some sample covariance matrices, Comm. Pure Appl. Math., 2005, 58(10), 1316–1357 http://dx.doi.org/10.1002/cpa.20070[Crossref] | Zbl 1075.62014

[5] Borodin A., Strahov E., Averages of characteristic polynomials in random matrix theory, Comm. Pure Appl. Math., 2006, 59(2), 161–253 http://dx.doi.org/10.1002/cpa.20092[Crossref] | Zbl 1155.15304

[6] Brézin E., Hikami S., Characteristic polynomials of random matrices, Comm. Math. Phys., 2000, 214(1), 111–135 http://dx.doi.org/10.1007/s002200000256[Crossref] | Zbl 1042.82017

[7] Brézin E., Hikami S., Characteristic polynomials of real symmetric random matrices, Comm. Math. Phys., 2001, 223(2), 363–382 http://dx.doi.org/10.1007/s002200100547[Crossref] | Zbl 0987.15012

[8] Brézin E., Hikami S., New correlation functions for random matrices and integrals over supergroups, J. Phys. A, 2003, 36(3), 711–751 http://dx.doi.org/10.1088/0305-4470/36/3/309[Crossref] | Zbl 1066.82022

[9] Deift, P.A., Orthogonal Polynomials and Random Matrices: a Riemann-Hilbert Approach, Courant Lecture Notes in Mathematics, 3, Courant Institute of Mathematical Sciences, New York, 1999 | Zbl 0997.47033

[10] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Tables of Integral Transforms, vol. I, McGraw-Hill, New York, 1954 | Zbl 0055.36401

[11] Feldheim O.N., Sodin S., A universality result for the smallest eigenvalues of certain sample covariance matrices, Geom. Funct. Anal., (in press), DOI:10.1007/s00039-010-0055-x [WoS][Crossref] | Zbl 1198.60011

[12] Forrester P.J., Log-Gases and Random Matrices, book in preparation, www.ms.unimelb.edu.au/ matpjf/matpjf.html | Zbl 1217.82003

[13] Fyodorov Y.V., Strahov E., An exact formula for general spectral correlation function of random Hermitian matrices, J. Phys. A, 2003, 36(12), 3202–3213 | Zbl 1044.81050

[14] Götze F., Kösters H., On the second-order correlation function of the characteristic polynomial of a Hermitian Wigner matrix, Comm. Math. Phys., 2009, 285(3), 1183–1205 http://dx.doi.org/10.1007/s00220-008-0544-z[WoS][Crossref] | Zbl 1193.15035

[15] Kösters H., On the second-order correlation function of the characteristic polynomial of a real symmetric Wigner matrix, Electron. Commun. Prob., 2008, 13, 435–447 [Crossref] | Zbl 1189.60019

[16] Kösters H., Asymptotics of characteristic polynomials of Wigner matrices at the edge of the spectrum, Asymptot. Anal., (in press), preprint available at http://arxiv.org/abs/0805.3044 | Zbl 1213.60023

[17] Kösters H., Characteristic polynomials of sample covariance matrices, J. Theoret. Probab., (in press), preprint available at http://arxiv.org/abs/0906.2763 | Zbl 1250.62034

[18] Mehta M.L., Random Matrices, 3rd ed., Pure and Applied Mathematics, 142, Elsevier, Amsterdam, 2004

[19] Olver F.W.J., Asymptotics and Special Functions, Academic Press, New York, 1974 | Zbl 0303.41035

[20] Péché, S., Universality results for the largest eigenvalues of some sample covariance matrix ensembles, Probab. Theory Related Fields, 2009, 143(3–4), 481–516 http://dx.doi.org/10.1007/s00440-007-0133-7[WoS][Crossref]

[21] Soshnikov A., A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices, J. Statist. Phys., 2002, 108(5–6), 1033–1056 http://dx.doi.org/10.1023/A:1019739414239[Crossref] | Zbl 1018.62042

[22] Strahov E., Fyodorov Y.V., Universal results for correlations of characteristic polynomials: Riemann-Hilbert approach, Comm. Math. Phys., 2003, 241(2–3), 343–382 | Zbl 1098.82018

[23] Szegö G., Orthogonal Polynomials, 3rd ed., American Mathematical Society Colloquium Publications, 23, American Mathematical Society, Providence, 1967

[24] Tao T., Vu V., Random covariance matrices: universality of local statistics of eigenvalues, preprint available at http://arxiv.org/abs/0912.0966 | Zbl 1247.15036

[25] Vanlessen M., Universal behavior for averages of characteristic polynomials at the origin of the spectrum, Comm. Math. Phys., 2003, 253(3), 535–560 http://dx.doi.org/10.1007/s00220-004-1234-0[Crossref] | Zbl 1070.82013