Polynomial translation surfaces of Weingarten types in Euclidean 3-space
Dae Yoon
Open Mathematics, Tome 8 (2010), p. 430-436 / Harvested from The Polish Digital Mathematics Library

In this paper, we classify polynomial translation surfaces in Euclidean 3-space satisfying the Jacobi condition with respect to the Gaussian curvature, the mean curvature and the second Gaussian curvature.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269663
@article{bwmeta1.element.doi-10_2478_s11533-010-0034-3,
     author = {Dae Yoon},
     title = {Polynomial translation surfaces of Weingarten types in Euclidean 3-space},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {430-436},
     zbl = {1205.53004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0034-3}
}
Dae Yoon. Polynomial translation surfaces of Weingarten types in Euclidean 3-space. Open Mathematics, Tome 8 (2010) pp. 430-436. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0034-3/

[1] Baikoussis C., Koufogiorgos Th., On the inner curvature of the second fundamental form of helicoidal surfaces, Arch. Math., 1997, 68, 169–176 http://dx.doi.org/10.1007/s000130050046 | Zbl 0870.53004

[2] Blair D.E., Koufogiorgos Th., Ruled surfaces with vanishing second Gaussian curvature, Monatsh. Math., 1992, 113, 177–181 http://dx.doi.org/10.1007/BF01641765 | Zbl 0765.53003

[3] Dillen F., Goemans W., Van de Woestyne I., Translation surfaces of Weingarten type in 3-space, Bull. Transilvania Univ. Brasov (Ser. III), 2008, 50, 109–122

[4] Dillen F., Kühnel W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math., 1999, 98, 307–320 http://dx.doi.org/10.1007/s002290050142 | Zbl 0942.53004

[5] Dillen F., Sodsiri W., Ruled surfaces of Weingarten type in Minkowski 3-space, J. Geom., 2005, 83, 10–21 http://dx.doi.org/10.1007/s00022-005-0002-4 | Zbl 1094.53005

[6] Goemans W., Van de Woestyne I., Translation surfaces with the second fundamental form with vanishing Gaussian curvature in Euclidean and Minkowski 3-space, Proceeding PADGE, 2007

[7] Kim Y.H., Yoon D.W., Classification of ruled surfaces in Minkowski 3-spaces, J. Geom. Phys., 2004, 49, 89–100 http://dx.doi.org/10.1016/S0393-0440(03)00084-6 | Zbl 1078.53006

[8] Koufogiorgos Th., Hasanis T., A characteristic property of the sphere, Proc. Amer. Math. Soc., 1977, 67, 303–305 http://dx.doi.org/10.2307/2041291

[9] Koutroufiotis D., Two characteristic properties of the sphere, Proc. Amer. Math. Soc., 1974, 44, 176–178 http://dx.doi.org/10.2307/2039251 | Zbl 0283.53002

[10] Kühnel W., Ruled W-surfaces, Arch. Math., 1994, 62, 475–480 http://dx.doi.org/10.1007/BF01196440 | Zbl 0794.53008

[11] López R., Special Weingarten surfaces foliated by circles, Monatsh. Math., 2008, 154(4), 289–302 http://dx.doi.org/10.1007/s00605-008-0557-x | Zbl 1169.53005

[12] Munteanu M.I., Nistor A.I., Polynomial translation Weingarten surfaces in 3-dimensional Euclidean space, In: Differential Geometry, Proceedings of the VIII International Colloquium, Santiago de Compostela, Spain, World Scientific, Hackensack, 2009, 316–320 http://dx.doi.org/10.1142/9789814261173_0034 | Zbl 1179.53005

[13] Munteanu M.I., Nistor A.I., On the geometry of the second fundamental form of translation surface in 𝔼3 , Houston J. Math., 2010, (in print), preprint available at http://arxiv.org/abs/0812.3166

[14] Yoon D.W., Some properties of the helicoid as ruled surfaces, JP Jour. Geom. Topology, 2002, 2, 141–147 | Zbl 1038.53005