The paper addresses the existence and uniqueness of entropy solutions for the degenerate triply nonlinear problem: b(v)t − div α(v, ▽g(v)) = f on Q:= (0, T) × Ω with the initial condition b(v(0, ·)) = b(v 0) on Ω and the nonhomogeneous boundary condition “v = u” on some part of the boundary (0, T) × ∂Ω”. The function g is continuous locally Lipschitz continuous and has a flat region [A 1, A 2,] with A 1 ≤ 0 ≤ A 2 so that the problem is of parabolic-hyperbolic type.
@article{bwmeta1.element.doi-10_2478_s11533-010-0032-5, author = {Kaouther Ammar}, title = {Degenerate triply nonlinear problems with nonhomogeneous boundary conditions}, journal = {Open Mathematics}, volume = {8}, year = {2010}, pages = {548-568}, zbl = {1203.35152}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0032-5} }
Kaouther Ammar. Degenerate triply nonlinear problems with nonhomogeneous boundary conditions. Open Mathematics, Tome 8 (2010) pp. 548-568. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0032-5/
[1] Alt H.W., Luckhaus S., Quasilinear elliptic-parabolic differential equations, Math. Z., 1983, 183(3), 311–341 http://dx.doi.org/10.1007/BF01176474 | Zbl 0497.35049
[2] Ammar K., On nonlinear diffusion problems with strong degeneracy, J. Differential Equations, 2008, 244(8), 1841–1887 http://dx.doi.org/10.1016/j.jde.2007.11.013 | Zbl 1157.35058
[3] Ammar K., On degenerate non-uniformly elliptic problems, Differ. Equ. Appl., 2010, 2, 189–215 | Zbl 1204.35099
[4] Ammar K., Redwane H., Degenerate stationary problems with homogeneous boundary conditions, Electron. J. Differential Equations, 2008, 30, 1–18 | Zbl 1138.35352
[5] Ammar K., Redwane H., Renormalized solutions for nonlinear degenerate elliptic problems with L 1 data, Rev. Mat. Complut., 2009, 22(1), 37–52 | Zbl 1171.35055
[6] Ammar K., Wittbold P., Existence of renormalized solutions of degenerate elliptic-parabolic problems, Proc. Roy. Soc. Edinburgh A, 2003, 133(3), 477–496 http://dx.doi.org/10.1017/S0308210500002493 | Zbl 1077.35103
[7] Ammar K., Wittbold P., On a degenerate scalar conservation law with general boundary condition, Differential Integral Equations, 2008, 21(3–4), 363–386 | Zbl 1224.35061
[8] Ammar K., Wittbold P., Carrillo J., Scalar conservation laws with general boundary condition and continuous flux function, J. Differential Equations, 2006, 228(1), 111–139 http://dx.doi.org/10.1016/j.jde.2006.05.002 | Zbl 1103.35069
[9] Andreianov B., Some problems of the theory of nonlinear degenerate parabolic problems systems of conservation laws, PhD thesis, Université de Franche-Comté, France, 2000.
[10] Andreianov B., Bendahmane M., Karlsen K.H., Ouaro S., Well-posedness results for triply nonlinear degenerate parabolic equations, J. Differential Equations, 2009, 247(1), 277–302 http://dx.doi.org/10.1016/j.jde.2009.03.001 | Zbl 1178.35212
[11] Bardos C., le Roux A.Y., Nédélec J.-C., First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 1979, 4(9), 1017–1034 http://dx.doi.org/10.1080/03605307908820117 | Zbl 0418.35024
[12] Bénilan P., Boccardo L., Gallouët T., Gariephy R., Pierre M., Vázquez J.L., An L 1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa. Cl. Sci., 22(2), 1995, 241–273 | Zbl 0866.35037
[13] Bénilan P., Carrillo J., Wittbold P., Renormalized entropy solutions of scalar conservation laws, Ann. Scuola Norm. Sup. Pisa. Cl. Sci., 29(2), 2000, 313–327 | Zbl 0965.35021
[14] Bénilan P., Wittbold P., On mild and weak solutions of elliptic-parabolic problems, Adv. Differential Equations, 1996, 1(6), 1053–1073 | Zbl 0858.35064
[15] Blanchard D., Guibé O., Redwane H., Nonlinear equations with unbounded heat conduction and integrable data, Ann. Mat. Pura Appl., 2008, 187(3), 405–433 http://dx.doi.org/10.1007/s10231-007-0049-y | Zbl 1223.35152
[16] Blanchard D., Porretta A., Stefan problems with nonlinear diffusion and convection, J. Differential Equations, 2005, 210(2), 383–428 http://dx.doi.org/10.1016/j.jde.2004.06.012 | Zbl 1075.35112
[17] Carrillo J., Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 1999, 147(4), 269–361 http://dx.doi.org/10.1007/s002050050152 | Zbl 0935.35056
[18] Carrillo J., Conservation laws with discontinuous flux functions and boundary conditions, J. Evol. Equ., 2003, 3(2), 283–301 | Zbl 1027.35069
[19] Carrillo J., Wittbold P., Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems, J. Differential Equations, 1999, 156(1), 93–121 http://dx.doi.org/10.1006/jdeq.1998.3597
[20] Carrillo J., Wittbold P., Renormalized entropy solutions of scalar conservation laws with boundary condition, J. Differential Equations, 2002, 185(1), 137–160 http://dx.doi.org/10.1006/jdeq.2002.4179 | Zbl 1026.35069
[21] DiPerna R.J., Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., 1985, 88(3), 223–270 http://dx.doi.org/10.1007/BF00752112 | Zbl 0616.35055
[22] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992 | Zbl 0804.28001
[23] Eymard R., Gallouët T., Herbin R., Finite Volume Methods, In: Handbook of Numerical Analysis, 7, North-Holland, Elsevier, Amsterdam, 2000, 713–1020 | Zbl 0981.65095
[24] Eymard R., Herbin R., Michel A., Mathematical study of a petroleum engineering scheme, Math. Model. Numer. Anal., 2003, 37(6), 937–972 http://dx.doi.org/10.1051/m2an:2003062 | Zbl 1118.76355
[25] Gallouët T., Boundary conditions for hyperbolic equations or systems, In: Numerical Mathematics and Advanced Applications, Springer, Berlin, 2004, 39–55 | Zbl 1198.35148
[26] Giusti E., Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, Birkhäuser, Basel, 1984 | Zbl 0545.49018
[27] Karlsen K.H., Risebro N.H., Towers J.D., On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient, Electron. J. Differential Equations, 2002, 93, 1–23 | Zbl 1015.35049
[28] Karlsen K.H., Towers J.D., Convergence of the Lax-Friedrichs scheme and stability for conservation laws with discontinuous space-time dependent flux, Chinese Ann. Math. Ser. B, 2004, 25(3), 287–318 http://dx.doi.org/10.1142/S0252959904000299 | Zbl 1112.65085
[29] Kruzhkov S.N., Generalized solutions of the Cauchy problem in the large for first-order nonlinear equations, Dokl. Akad. Nauk. SSSR, 1969, 187, 29–32 (in Russian) | Zbl 0202.37701
[30] Kruzhkov S.N., First-order quasilinear equations in several independent variables, Mat. Sb. (N.S.), 1970, 81(2), 228–255 (in Russian) | Zbl 0215.16203
[31] Landes R., On the existence of weak solutions for quasilinear equations parabolic initial-boundary value poblems, Proc. Roy. Soc. Edinburgh A, 1981, 89A(3–4), 217–237
[32] Leray J., Lions J.L., Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 1965, 93, 97–107 | Zbl 0132.10502
[33] Málek J., Nečas J., Rokyta M., Ružička M., Weak and measure-valued solutions to evolutionary PDEs, Applied Mathematics and Mathematical Computation 13, Chapman & Hall, London, 1996 | Zbl 0851.35002
[34] Mascia C., Porretta A., Terracina A., Nonhomogeneous Dirichlet problems for degenerate parabolic-Hyperbolic Equations, Arch. Ration. Mech. Anal., 2002, 163(2), 87–124 http://dx.doi.org/10.1007/s002050200184 | Zbl 1027.35081
[35] Michel A., Vovelle J., Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods, SIAM J. Numer. Anal., 2003, 41(6), 2262–2293 http://dx.doi.org/10.1137/S0036142902406612 | Zbl 1058.35127
[36] Murat F., Soluciones renormalizadas de EDP elipticas non lineales, Cours à l’Université de Séville, Publication R93023, Laboratoire d’Analyse Numérique, Paris VI, France, 1993
[37] Otto F., Initial-boundary value problem for a scalar conservation law, C.R. Acad. Sci. Paris Sér. I Math., 1996, 322(8), 729–734 | Zbl 0852.35013
[38] Perthame B., Kinetic Formulation of Conservation laws, Oxford Lecture Series in Mathematics and its Applications, 21, Oxford University Press, Oxford, 2002 | Zbl 1030.35002
[39] Szepessy A., Measure-valued solutions of scalar conservation laws with boundary conditions, Arch. Rational Mech. Anal., 1989, 107(2), 181–193 http://dx.doi.org/10.1007/BF00286499 | Zbl 0702.35155
[40] Vallet G., Dirichlet problem for a nonlinear conservation law, Rev. Mat. Complut., 2000, 13(1), 231–250 | Zbl 0979.35099